
ar
X

iv
:1

70
1.

08
03

0v
2

 [
cs

.P
L

]
 6

 J
ul

 2
01

7

Model Checking of Cache for WCET Analysis Refinement ∗

Valentin Touzeau
Univ. Grenoble Alpes

CNRS, VERIMAG, F-38000
Grenoble, France

Valentin.Touzeau@imag.fr

Claire Maïza
Univ. Grenoble Alpes

CNRS, VERIMAG, F-38000
Grenoble, France

Claire.Maiza@imag.fr

David Monniaux
Univ. Grenoble Alpes

CNRS, VERIMAG, F-38000
Grenoble, France

David.Monniaux@imag.fr

ABSTRACT

On real-time systems running under timing constraints,
scheduling can be performed when one is aware of the
worst case execution time (WCET) of tasks. Usually, the
WCET of a task is unknown and schedulers make use of
safe over-approximations given by static WCET analysis.
To reduce the over-approximation, WCET analysis has to
gain information about the underlying hardware behavior,
such as pipelines and caches. In this paper, we focus on the
cache analysis, which classifies memory accesses as
hits/misses according to the set of possible cache states.
We propose to refine the results of classical cache analysis
using a model checker, introducing a new cache model for
the least recently used (LRU) policy.

Keywords

Worst Case Execution Time, Cache Analysis, Model
Checking, Least Recently Used Cache

1. INTRODUCTION
On critical systems, one should be able to guarantee that

each task will meet its deadline. This strong constraint can
be satisfied when the scheduler has bounds on every tasks’
execution time. The aim of a WCET analysis is to compute
such safe bounds statically. In order to provide a satisfiable
bound, the WCET analysis needs to model the execution of
instructions at the hardware level. However, to avoid the
huge latency of main memory access, one can copy parts
of the main memory into small but fast memories called
caches. In order to retrieve precise bounds on the execution
time of instructions, it is thus mandatory to know which
instructions are in the cache and which are not. In this
paper we focus on instruction caches, ie. we aim at knowing
whether instructions of the program are in the cache when
they are executed.

For efficiency reasons, the main memory is partitioned
into fixed size blocks. To avoid repeated accesses to the
same block, they are temporary copied into the cache when
requested by the CPU. This way, they can be retrieved faster
on the next access, without requesting the main memory
again. Moreover, to speed up the retrieval of blocks from
the cache, caches are usually partitioned into sets of equal
sizes. A memory block can only be stored in one set that

∗This work was partially supported by the
European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreement nr. 306595 “STATOR”.

is uniquely determined by the address of the block. Thus,
when searching a block in the cache, it is looked for in only
one set. Since the main memory is bigger than the cache, it
may happen that a set is already full when trying to store
a new block in it. In this case, one block of the set has
to be evicted in order to store the new one. This choice
does not depend on the content of the other sets and is done
according to the cache replacement policy. In our case, we
focus on the Least Recently Used (LRU) policy (for other
policies, refer to [5]). A cache set using the LRU policy can
be represented as a queue containing blocks ordered from
the most recently accessed (or used) to the least recently
accessed. When the CPU requests a block that is not in
the cache (cache miss), it is stored at the beginning of the
queue (it becomes the most recently used block) and the
last block (the least recently used) is evicted. On the other
hand, when the requested block is already in the cache, it is
moved to the beginning of the queue, delaying its eviction.
The position of a block in the queue is called the age of the
block: the youngest block is the most recently used and the
oldest is the least recently used.

The aim of a cache analysis is to provide a classification
of memory accesses as ”cache hit”, ”cache miss” or
”unknown” (not always a hit, and not always a miss) to be
used as part of the WCET analysis. This classification is
usually established by abstract interpretations called ”May
Analysis” and ”Must Analysis” that respectively compute a
lower and upper bound of every block’s age. For more
details about these analysis, refer to [3]. Must analysis is
used to predict the cache hits (if a block must be in the
cache when accessing it, access is a hit), whereas may
analysis is used to predict the misses (if a block may not be
in the cache when accessing it, access is a miss). However,
if a block is in the may cache but not in the must cache, it
is classified as unknown. This can happen because this
access is sometimes a miss and sometimes a hit, or because
the abstract interpretation is too coarse. An example is
given on Figure 1. Program states (basic blocks) are on the
left, whereas abstract cache states (may and must) at the
exit of basic blocks are on the right. For simplicity, every
basic block is stored in exactly one memory block. For
example, at the exit of block 5, the minimum age of blocks
a, b, c and d computed by the may analysis are respectively
1, 0, 2 and 1. At block 6, a is accessed and is in the cache
(because there are only 4 different blocks, and they all fit
together in the cache), thus it should be classified as a hit.
However, it is classified as ”unknown” by the may and must
analysis because of an over-approximation performed by

http://arxiv.org/abs/1701.08030v2
http://erc.europa.eu/
http://stator.imag.fr

the must analysis. Indeed, at entry of block 5, the must
cache is [⊥,⊥,⊥, a] because a is the only block that must
be accessed, and b, c and d may be accessed since the last
access to a. An other possibility to classify memory access

1. a

2. b

3. c

4. d

5. b

6. a

[a,⊥,⊥,⊥]May

[a,⊥,⊥,⊥]Must

[b, a,⊥,⊥]May

[b, a,⊥,⊥]Must

[c, b, a,⊥]May

[c, b, a,⊥]Must

[d, c, b, a]May

[d, c, b, a]Must

[b, {a, d}, c,⊥]May

[b,⊥,⊥,⊥]Must

[a, b, d, c]May

[a, b,⊥,⊥]Must

Figure 1: Example of access classified as ”unknown”

as hit or miss is to use a model checker. Both the program
and the cache are encoded as a transition system. Then,
the question of the existence in the cache of a given block
at a given program point is encoded as a logical formula.
Both the formula to check and the transition system are
provided to the model checker, that classifies the block as
“in the cache”, “out of the cache” or “unknown”. Since the
model deals with every reachable program/cache states
separately, model checking is usually more precise than
abstract interpretation. However, it is also much slower
and often requires more memory during the analysis.

To avoid the precision loss of abstract interpretation
without performing a heavy analysis using a model
checker, we propose to mix both analysis. We first perform
the classical may/must analysis by abstract interpretation,
and then refine the classification using a model checker.
Thus, we only use the model checker to classify blocks that
were classified as ”unknown” by the abstract interpretation.
Moreover, we introduce a new abstract model that can be
used by the model checker to efficiently represent LRU
cache states.

2. WCET ANALYSIS
This section gives some basic notions about WCET

analysis and explain the link with cache analysis.
Usually, WCET analysis are performed by following steps:

First, a control flow graph is retrieved from the binary code
under analysis by grouping instructions into basic blocks
(sequences of instructions with only one entry point and one
exit point). Then, the WCET of the program is computed
by bounding the execution time of every basic block and
finding the “longest” path inside the CFG.

The computation of basic blocks execution time is done
by micro-architectural analysis that models pipelines and
caches. Independently, several other analysis like value
analysis and loop bound analysis are performed to provide
information about the semantics to the WCET analyzer.

At hardware level, the uncertainty about execution times
of instructions comes from pipelines (which can start
executing an instruction before the previous one is
finished) and caches (which avoid costly main memory
accesses). The aim of a cache analysis is to classify

memory accesses as cache hit or cache miss. Since an
access to the main memory can be 100 times slower than
an access to a cache, it is mandatory to classify memory
access as hit/miss in order to provide accurate bounds on
WCET estimations. Moreover, when a memory access is
not classified as a hit or a miss, the WCET analysis must
treat the both cases [2]. Thus, it can make the analysis
slower and increase the pessimism.

To avoid this precision loss, we aim at refining the
classification of unknown block using a model checker.

3. RELATED WORK
Some previous works use a model checker for performing

WCET analysis of programs. The approach of Lv, Yi,
Guan and Yu [6] is the following. Using abstract
interpretation, they classify memory access as ”cache
misses”, ”cache hits” or ”unknown”. Every memory access
is translated in a timed automaton that describe the access
to the memory bus by introducing some delay. Finally,
these automata are connected together according to the
CFG and the model checker explores the transition system,
computing a WCET estimation. This approach allows
them to perform WCET analysis of multicore systems.
Although they are using a model checker in a WCET
analysis, our approach is different and complementary.
Indeed, they are using the model checker to refine the
timing analysis itself, and not the classification of memory
accesses as we do. Therefore, our refinement of the cache
content can be added to the first step of their analysis to
retrieve better bounds. The work of Chattopadhyay and
Roychoudhury [1] is closer to our approach. They use the
model checker to analyze behavior of caches shared by
several cores. Moreover, by instrumenting the program at
source code level they can take the program semantics into
account and do not treat infeasible path, make the analysis
more precise. Since they are performing a may/must
analysis as a first step, we believe our analysis can be used
to refine this first step, before taking shared caches into
account.

4. OUR ABSTRACT MODEL
To perform the cache analysis using a model checker, we

have to provide models both for the program and for the
cache. We use these models to answer the following
questions: “At a given program point, is a given block in
the cache whatever the path to reach this point is ?”
(classify as hit) and “Is the given block never in the cache
at the given program point, whatever the path used to
reach this point is ?” (classify as miss).

To model the cache, we use an abstraction of the real cache
state to avoid the state space explosion problem one can
meet when using a model checker. In the following formal
description of our model, we adapt the notations from Jan
Reineke’s PhD [7]:

Definition 1. Cache size

k ∈ N is the size of the cache set (in blocks)

Definition 2. Set of memory blocks

M represents the set of memory blocks.

M⊥ = M ∪ {⊥} includes the empty line.

Definition 3. Set of Cache States

CLRU ⊂ Mk
⊥ symbolizes the set of reachable cache states

[b1, b2, . . . , bk] ∈ CLRU represents a reachable state

b1 is the least recently used block

In addition of these notation, to define our abstract model,
we introduce the following notations: A, represents the set
of abstract cache states, εa ∈ A, represents cache states
that does not contain a, and [S]a ∈ A, represents cache
states that contains a and some other blocks younger than
a (forming the set S), where a ∈ M is a memory block.

Definition 4. Set of Abstract Cache States

A = P(CLRU) is the power set of reachable cache states.

Definition 5. Abstract Cache States

εa =
{

[b1, ..., bk] ∈ CLRU ,∀i ∈ J1, kK, bi 6= a
}

∈ A

[S]a =
{

[b1, ..., bk] ∈ CLRU ,

∃i ∈ J1, kK, bi = a ∧ (bj ∈ S ⇔ j < i)
}

∈ A

The idea behind the abstract model we define below is to
track only one block (noted a). Indeed, to know whether a
block is in a LRU cache, you only have to count the number
of accesses made to pairwise different blocks since the last
access to it. In other words, you do not have to know the age
of others blocks, you are only interested in knowing if they
are younger than the block you are tracking. Therefore, we
group together cache states that have the same set of blocks
younger than the block we want to track.

To every cache state p, we associate an abstract state
αa(p) which consists of the set of values younger than a in
the cache or a special value in the case where a is not in
the cache.

Definition 6. Abstraction of Cache States

αa : CLRU → A

αa ([b1, ..., bk]) =

{

εa if ∀i ∈ J1, kK, bi 6= a

[{b1, ..., bi−1}]a if ∃i ∈ J1, kK, bi = a

For example, when tracking block a, the abstract cache
state associated to the exit of block 1 of Figure 1 is [{}]a ,
symbolizing that a is the least recently used block at this
point (the set of younger blocks is empty). At the exit of
block 4, the abstract cache state is [{b, c, d}]a.

Additionally, we define the partial function updateaLRU(k),
which models the effect of accessing a block on an abstract
state. When the abstract cache state does not contain a (i.e.
is equal to εa), it remains unchanged until an access to a is
made. When a is accessed, every new block access appears
into the set S. When the cardinal of S reaches k−1 (a is the
least recently used block), a new access to a different block
evicts a (and new abstract cache state is reset to εa). If an
access to a is done in the meantime, the set S of younger
block is reset to {}.

Definition 7. Abstract State Update

updateaLRU(k) : A×M → A

updateaLRU(k)(εa, c) =

{

[{}]a if a = c

εa if a 6= c

updateaLRU(k)([S]a, c) =

[{}]a if c = a

[S]a if c 6= a and c ∈ S

[S ∪ {c}]a if c 6= a and c /∈ S and |S| < k − 1

εa if c 6= a and c /∈ S and |S| = k − 1

Considering the example of Figure 1, the model checker
associates two different abstract states to block 5 depending
on the incoming flow from block 1 or block 4. These states
are respectively [{}]a and [{b, c, d}]a. Thus, applying the
update function for treating the access made to b in block 5,
we obtain [{b}]a and [{b, c, d}]a. Therefore, we know that a
is not evicted from the cache by block 5 and access made to
a in block 6 is not classified as unknown anymore but as a
hit.

The second part of our model is the model of the
program. Since we focus on instruction caches, the model
we use for the program is a graph obtained from the CFG
by splitting basic blocks (when needed) into blocks of the
size of a memory block. Thus, a path in the model
represents the sequence of memory access that the
instruction cache handles during the execution of the
program. However, because we only track one memory
block at a time, it is also possible to simplify the control
flow graph according to this block. Indeed, one can slice
the CFG according to the cache set associated to the block
we want to track, removing every memory access to an
other cache set. Moreover, we can remove from the
obtained graph every node that is not an access to a and
that does not contribute to a eviction. Thus, it appears
that every node that does not contain a in their entry may
cache can be removed.

[. . .]a

εa

[. . .]a

access to a

eviction of a

Figure 2: Simplifying CFG according to access to a

This simplification of the CFG is illustrated on Figure 2.
Plain arrows represent program flow potentially
manipulating block a, whereas dashed arrows represent
flow that does not and that can be simplified in only one
arrow. At some point after an access to block a, we can be
sure that a is not in the cache anymore. Therefore, it is
possible to remove all nodes (dashed arrows) from this
point until the next access to a.

5. IMPLEMENTATION / EXPERIMENTS
This section describe the prototype we build and the

experiments we made to valid our proof of concept. The
workflow of our analysis is illustrated on Figure 3.

Our implementation does not use directly the binary
code to analyze but runs on the LLVM bytecode
representation of it. We first build the CFG of the program
from the bytecode using the LLVM framework. Since the

Program Size
4 ways 8 ways 16 ways

Un Nc Un Nc Un Nc

recursion 26 34.6% 11.1% 53.8% 7.1% 53.8% 21.4%
fac 26 34.6% 11.1% 46.1% 8.3% 46.1% 41.6%

binarysearch 48 12.5% 0% 56.2% 29.6% 52.0% 12.0%
prime 57 10.5% 0% 29.8% 35.2% 57.8% 18.1%

insertsort 58 23.7% 28.5% 28.8% 11.7% 55.9% 9.0%
bsort 62 30.6% 57.8% 53.2% 6.0% 62.9% 5.1%
duff 64 10.9% 0% 37.5% 12.5% 37.5% 12.5%

countnegative 65 21.5% 21.4% 43.0% 21.4% 52.3% 20.5%
st 137 14.5% 30.0% 43.7% 13.3% 69.3% 5.2%

ludcmp 179 11.1% 5.0% 39.6% 15.4% 67.5% 4.1%
minver 265 20.7% 29.0% 44.1% 12.8% 63.0% 10.7%

statemate 582 7.5% 2.2% 7.9% 4.3% 8.2% 2.0%

Table 1: Precision of May/Must analysis and Model Checker

CFG
Cache

Configuration

Hit/Miss
Classification

May/Must
Analysis

Cache
Modeling

Model
Checker

Unknown

Not unknown

Figure 3: Workflow of our prototype

LLVM bytecode does not affect any address to
instructions, we have to provide a mapping of instructions
to the main memory. For our prototype, we assume that
every instruction has the same size in memory. Thus,
memory blocks contain a fixed number of instructions and
can be obtain by splitting basic blocks of the CFG into
fixed size blocks. Using this mapping and the CFG, our
prototype performs a may/must analysis of the program.
For every block access classified as unknown, we build an
abstract model of the cache and provide it to the model
checker together with the CFG (simplified as explain
above). It would be possible to use real addresses from
binary code and a correspondence between LLVM bytecode
and binary code, as done in [4], but this requires significant
engineering and falls outside of the scope of this
experiment.

We experiment our prototype with benchmarks of the
TacleBench1. Table 1 contains the results of our
experiments. Size of program is given in number of
memory block. We run our experiments with caches of
only one cache set, with different sizes: 4, 8 or 16 ways.
For every experiment, we measure both the amount of
accesses classified as “unknown” by the may/must analysis
(column “Un”) and the amount of accesses newly classified
as “always in the cache” or “always out of the cache” among
the accesses left “unknown” by the may/must analysis
(column Nc). During these experiments, our analysis
classifies up to 57.8% of the accesses left unclassified by the
abstract interpretation analysis.

6. CONCLUSION
We proposed to refine classical cache analysis by using

a model checker. To avoid the common problem of state
space explosion meet when dealing with model checking, we
introduce a new abstract cache model. This model allows

1http://www.tacle.eu/index.php/activities/taclebench

us to compute the exact age of a memory block along an
execution path of the program. Thus, we can select the
memory block we want to refine. Moreover, it allows us
to simplify the program model too, by removing some nodes
useless to the refinement. Finally, we implement a prototype
and test it on a benchmark. Our experiments shows that our
approach is able to refine up to 60% of the memory access
classified as unknown by the abstract interpretation.

Our prototype runs on LLVM bytecode, and use an
unrealistic memory mapping. As future work, we aim at
implementing an analyzer that runs on the binary code. To
finally validate our approach, it is also possible to compare
the performance of our analysis to other analysis refining
may/must analysis, like persistence analysis or analysis
performing virtual inlining and unrolling.

7. REFERENCES
[1] S. Chattopadhyay and A. Roychoudhury. Scalable and

precise refinement of cache timing analysis via model
checking. In RTSS 2011. IEEE Computer Society, 2011.

[2] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund,
C. Maiza, J. Reineke, B. Triquet, and R. Wilhelm.
Predictability considerations in the design of multi-core
embedded systems.

[3] C. Ferdinand. Cache behavior prediction for real-time
systems. Pirrot, 1997.

[4] J. Henry, M. Asavoae, D. Monniaux, and C. Maiza.
How to compute worst-case execution time by
optimization modulo theory and a clever encoding of
program semantics. In Y. Zhang and P. Kulkarni,
editors, SIGPLAN/SIGBED, LCTES ’14. ACM, 2014.

[5] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi. A
survey on static cache analysis for real-time systems.
LITES, 2016.

[6] M. Lv, W. Yi, N. Guan, and G. Yu. Combining
abstract interpretation with model checking for timing
analysis of multicore software. In RTSS2010, pages
339–349. IEEE Computer Society, 2010.

[7] J. Reineke. Caches in WCET Analysis: Predictability -
Competitiveness - Sensitivity. PhD thesis, Saarland
University, 2009.

	1 Introduction
	2 WCET Analysis
	3 Related Work
	4 Our Abstract Model
	5 Implementation / Experiments
	6 Conclusion
	7 References

