
THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Valentin TOUZEAU

Thèse dirigée par David MONNIAUX, Université Grenoble Alpes
et codirigée par Claire MAIZA, MCF, Grenoble INP

préparée au sein du Laboratoire VERIMAG
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Analyse statique de caches LRU :
complexité, analyse optimale, et applications
au calcul de pire temps d'exécution et à la
sécurité

Static analysis of least recently used caches:
complexity, optimal analysis, and
applications to worst-case execution time
and security

Thèse soutenue publiquement le 8 octobre 2019,
devant le jury composé de :

Monsieur DAVID MONNIAUX
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES, Directeur
de thèse
Madame CLAIRE MAÏZA
MAITRE DE CONFERENCES, GRENOBLE INP, Examinateur
Monsieur KENNETH MCMILLAN
CHERCHEUR, LAB RECHERCHE MICROSOFT A REDMOND - USA,
Rapporteur
Monsieur BJÖRN LISPER
PROFESSEUR, UNIVERSITE DE MÄLARDALEN (MDH) - SUEDE,
Rapporteur
Monsieur HUGUES CASSE
MAITRE DE CONFERENCES, UNIVERSITE TOULOUSE-III-PAUL-
SABATIER, Examinateur
Monsieur JAN REINEKE
PROFESSEUR, UNIVERSITE DE LA SARRE - ALLEMAGNE,
Examinateur
Monsieur FREDERIC PETROT
PROFESSEUR, GRENOBLE INP, Président
Monsieur SEBASTIEN FAUCOU
MAITRE DE CONFERENCES, UNIVERSITE DE NANTES, Examinateur

Abstract

�e certification of real-time safety critical programs requires bounding their execution time. Due
to the high impact of cache memories on memory access latency, modern Worst-Case Execution
Time estimation tools include a cache analysis. �e aim of this analysis is to statically predict if
memory accesses result in a cache hit or a cache miss. �is problem is undecidable in general,
thus usual cache analyses perform some abstractions that lead to precision loss. One common
assumption made to remove the source of undecidability is that all execution paths in the program
are feasible. Making this hypothesis is reasonable because the safety of the analysis is preserved
when adding spurious paths to the program model. However, classifying memory accesses as
cache hits or misses is still hard in practice under this assumption, and efficient cache analysis
usually involve additional approximations, again leading to precision loss. �is thesis investigates
the possibility of performing an optimally precise cache analysis under the common assumption
that all execution paths in the program are feasible.

We formally define the problems of classifying accesses as hits and misses, and prove that they
are NP-hard or PSPACE-hard for common replacement policies (LRU, FIFO, NMRU and PLRU).
However, if these theoretical complexity results legitimate the use of additional abstraction, they
do not preclude the existence of algorithms efficient in practice on industrial workloads.

Because of the abstractions performed for efficiency reasons, cache analyses can usually clas-
sify accesses as Unknown in addition to Always-Hit (Must analysis) or Always-Miss (May analy-
sis). Accesses classified as Unknown can lead to both a hit or a miss, depending on the program
execution path followed. However, it can also be that they belong to one of the Always-Hit or
Always-Miss category and that the cache analysis failed to classify them correctly because of a
coarse approximation. We thus designed a new analysis for LRU instruction that is able to soundly
classify some accesses into a new category, called Definitely Unknown, that represents accesses
that can lead to both a hit or a miss. For those accesses, one knows for sure that their classifica-
tion does not result from a coarse approximation but is a consequence of the program structure
and cache configuration. By doing so, we also reduce the set of accesses that are candidate for a
refined classification using more powerful and more costly analyses.

Our main contribution is an analysis that can perform an optimally precise analysis of LRU
instruction caches. We use a method called block focusing that allows an analysis to scale by only
analyzing one cache block at a time. We thus take advantage of the low number of candidates
for refinement le� by our Definitely Unknown analysis. �is analysis produces an optimal classi-
fication of memory accesses at a reasonable cost (a few times the cost of the usual May and Must
analyses).

We evaluate the impact of our precise cache analysis on the pipeline analysis. Indeed, when
the cache analysis is not able to classify an access as Always-Hit or Always-Miss, the pipeline
analysis must consider both cases. By providing a more precise memory access classification, we
thus prune the state space explored by the pipeline analysis and hence the WCET analysis time.

Aside from this application of precise cache analysis to WCET estimation, we investigate the
possibility of using the Definitely Unknown analysis in the domain of security. Indeed, caches can
be used as side-channel to extract some sensitive data from a program execution, and we propose
a variation of our Definitely Unknown analysis to help a developer finding the source of some
information leakage.

Résumé

Dans le cadre des systèmes critiques, la certification de programmes temps-réel nécessite de
borner leur temps d’exécution. Les mémoires caches impactant fortement la latence des accès
mémoires, les outils de calcul de pire temps d’exécution incluent des analyses de cache. Ces ana-
lyses visent à prédire statiquement si ces accès aboutissent à des cache-hits ou des cache-miss. Ce
problème étant indécidable en général, les analyses de caches emploient des abstractions pouvant
mener à des pertes de précision. Une hypothèse habituelle pour rendre le problème décidable
consiste à supposer que toutes les exécutions du programme sont réalisables. Ce�e hypothèse
est raisonnable car elle ne met pas en cause la validité de l’analyse : tous les véritables chemins
d’exécutions du programme sont couverts par l’analyse. Néanmoins, la classification des accès
mémoires reste difficile en pratique malgré ce�e hypothèse, et les analyses de cache efficaces uti-
lisent des approximations supplémentaires. Ce�e thèse s’intéresse à la possibilité de réaliser des
analyses de cache de précision optimale sous l’hypothèse que tous les chemins sont faisables.

Les problèmes de classification d’accès mémoires en hits et miss y sont définis formellement
et nous prouvons qu’ils sont NP-difficiles, voire PSPACE-difficiles, pour les politiques de rem-
placement usuelles (LRU, FIFO, NMRU et PLRU). Toutefois, si ces résultats théoriques justifient
l’utilisation d’abstractions supplémentaires, ils n’excluent pas l’existence d’un algorithme efficace
en pratique pour des instances courantes dans l’industrie.

Les abstractions usuelles ne perme�ent pas, en général, de classifier tous les accès mémoires
en Always-Hit et Always-Miss. Certains sont alors classifiés Unknown par l’analyse de cache, et
peuvent aboutir à des cache-hits comme à des cache-miss selon le chemin d’exécution emprunté.
Cependant, il est aussi possible qu’un accès soit classifié comme Unknown alors qu’il mène tou-
jours à un hit (ou un miss), à cause d’une approximation trop grossière. Nous proposons donc une
nouvelle analyse de cache d’instructions LRU, capable de classifier certains accès comme Defini-
tely Unknown, une nouvelle catégorie représentant les accès pouvant mener à un hit ou à un miss.
On est alors certain que la classification de ces accès est due au programme et à la configuration du
cache, et pas à une approximation peu précise. Par ailleurs, ce�e analyse réduit le nombre d’accès
candidats à une reclassification par des analyses plus précises mais plus coûteuses.

Notre principale contribution est une analyse capable de produire une classification de
précision optimale. Celle-ci repose sur une méthode appelée block focusing qui permet le passage
à l’échelle en analysant les blocs de cache un par un. Nous profitons ainsi de l’analyse Definitely
Unknown, qui réduit le nombre de candidats à une classification plus précise. Ce�e analyse
précise produit alors une classification optimale pour un coût raisonnable (proche du coût des
analyses usuelles May et Must).

Nous étudions également l’impact de notre analyse exacte sur l’analyse de pipeline. En effet,
lorsqu’une analyse de cache ne parvient pas à classifier un accès comme Always-Hit ou Always-

Miss, les deux cas (hit et miss) sont envisagés par l’analyse de pipeline. En fournissant une clas-
sification plus précise des accès mémoires, nous réduisons donc la taille de l’espace d’états de
pipeline exploré, et donc le temps de l’analyse.

Par ailleurs, ce�e thèse étudie la possibilité d’utiliser l’analyse Definitely Unknown dans le
domaine de la sécurité. Les mémoires caches peuvent être utilisées comme canaux cachés pour
extraire des informations de l’exécution d’un programme. Nous proposons une variante de l’ana-
lyse Definitely Unknown visant à localiser la source de certaines fuites d’information.

Acknowledgements

Foremost, I would like to thanks my advisors, Claire Maı̈za and David Monniaux for supporting
me I started my master internship for years ago. �is thesis would not be possible without their
advices, knowledge, guidance and patience.

I am thankful to all the members of my PhD commitee (Björn Lisper, Kenneth McMillan,
Hugues Cassé, Sébastien Faucou, Frédéric Pétrot and Jan Reineke) for evaluating my work and
advising me concerning my manuscript.

I would like to thanks all people from the laboratory, for their kindness and guidance. I am
particularly grateful to my friends, Maxime, Remy, Yanis, Clément, Noha, Aurianne, Vincent,
Cyril, Alexandre, Matheus, Raphaël, Hang, Hamza, Denis and Anaı̈s, for all the good times spent
together.

Many thanks to my family: parents, brother and sister, for supporting me during this thesis
and before. Last but not least, I would like to thanks Marie for being here when I needed the most,
and for being my partner in life.

i

Contents

1 Introduction 1

1.1 Organization of the manuscript . 3

2 Context 5

2.1 Caches . 5
2.1.1 Blocks and Locality Principles . 6
2.1.2 Cache sets and associativity . 6
2.1.3 Index, Tag, Offset . 8
2.1.4 Replacement policies . 8
2.1.5 Caches and Address Translation . 13
2.1.6 Cache configuration in this thesis . 15

2.2 Static Analysis . 15
2.2.1 Abstract Interpretation . 16
2.2.2 Model Checking . 23
2.2.3 Cache analysis methods in this thesis . 28

2.3 State of the Art in Cache Analysis . 28
2.3.1 Cache Conflict Graph . 28
2.3.2 Analysis of LRU caches . 29
2.3.3 Ferdinand’s May and Must analyses . 32
2.3.4 Persistence Analysis and Loop Unrolling 35
2.3.5 Other replacement policies . 37
2.3.6 Cache analysis by Model Checking . 37

3 Cache Analysis Complexity 39

3.1 Background . 39
3.2 Complexity of Replacement Policies . 42

3.2.1 Fixed associativity . 44
3.2.2 LRU . 45
3.2.3 FIFO . 49
3.2.4 PLRU . 56
3.2.5 NMRU . 60

4 Exact Cache Analysis 67

4.1 Approximating the set of Definitely Unknown Accesses 68
4.1.1 Reminder: Caches and Static Cache Analysis 68
4.1.2 Abstract Interpretation for Definitely Unknown 70
4.1.3 Definitely Unknown Proofs . 74
4.1.4 Experimental Evaluation . 79

ii

4.2 Exact Analysis of LRU Cache by Model Checking 83
4.2.1 Block Focusing . 84
4.2.2 Proof of Block focusing correctness . 86

4.3 Exact Analysis of LRU Cache by Abstract Interpretation 88
4.3.1 Exact Analyses as Fixed-Point Problems 90
4.3.2 Data Structures and Algorithms . 93

4.4 Experiments . 96
4.4.1 Refinement of Accesses classification by Exact Analyses 96
4.4.2 Efficiency comparison of Model Checking and ZDD approach 97
4.4.3 May/Must and Exact analyses execution time comparison 97

5 Applications 99

5.1 WCET Application . 99
5.2 Experiments . 102

5.2.1 WCET comparison . 103
5.2.2 Analysis time comparison . 104

5.3 Security . 108
5.3.1 Program model and semantics . 109
5.3.2 Our vulnerability analysis . 111
5.3.3 Analyses soundness . 114

6 Conclusion 117

6.1 Future Work . 119
6.1.1 Program Semantics . 119
6.1.2 Analyzing Data Caches . 124
6.1.3 Reducing analysis cost . 125
6.1.4 Other replacement policies . 126

7 Résumé en français 138

iii

Chapter 1

Introduction

Power plants, trains, airplanes, communication satellites and spacecra�s are some examples of
safety-critical real-time systems. �ey are safety critical because any failure of such a system
can lead to a human loss or huge economic cost, and they are real-time systems because they
have to react fast enough to their inputs and environments to be correct. In other words, safety
critical real-time systems are systems that have to respect their deadlines, and whose failures can
have disastrous consequences. An example of such system is a task that periodically reads some
sensors to correct the trajectory of a plane. If the period of the task is one millisecond, the task
must terminate in less than one millisecond (or less if input/output ji�er is constrained).

However, because of the always increasing amount of data to treat by time unit, modern pro-
cessors use awide variety of hardware optimizations thatmake the execution time of such systems
hard to predict. In particular, the use of cache memories aims at keeping the processor busy in
presence of a DRAM-based main memory, by retaining frequently used instructions and data in a
fast memory close to the processing unit. Indeed, the latency of an instruction involving the CPU
alone is usually several orders of magnitude lower than the main memory latency. �us, in the
presence of caches, the latency of an individual memory access may vary considerably depending
on whether the access is a cache hit, i.e,̇ it can be served from an on-chip cache memory, or a cache
miss. Ensuring that a real-time program meet its deadline is thus harder in presence of caches.

In practice, static analysis approaches for bounding the worst-case execution time (WCET) of
programs have to take into account whether or not accessed information is cached. �e purpose
of cache analyses considered in thesis is thus to statically classify every memory access at every
machine-code instruction in a program into one of the following three classes:

1. Always Hit: each dynamic instance of the memory access results in a cache hit;

2. Always Miss: each dynamic instance of the memory access results in a cache miss;

3. there exist dynamic instances that result in a cache hit and others that result in a cache miss.

�is is of course, in general, an undecidable question; so all analyses involve some form of ab-
straction, and may classify some accesses as “unknown”. More precisely, the undecidability issue
is usually tackled by making the assumption that every execution path in the program is feasible.
Of course, building a program that violate this assumption (for instance, by adding some dead-
code) is trivial. However, the program model (which consider all paths as feasible) covers all the
actual behaviors of the real program. An analysis that correctly treat all possible executions of
the model thus treats all the executions of the program.

1

Even under this “all path feasible” assumption the problem of memory classification seems
difficult, and many cache analyses use additional abstraction. In this thesis, we thus look at the
impact of this assumption on the cache analysis problem. More precisely:

• We investigate the complexity of performing an optimally precise cache analysis under this
hypothesis. If the problem is decidable under this assumption, some caches seem easier to
analyze that others. We thus investigate the difficulty of some cache analysis related prob-
lems under this hypothesis, for different cache replacement policies (that is, the algorithm
used for choosing which memory block to evict from the cache to make room for a new
block), from the complexity theory point of view.

• As mentioned above, there exist analyses that can guarantee that some accesses lead to
a hit, or a miss. However, there is no analysis to our knowledge that can guarantee an
access belongs to the category 3 above (i.e. no known analysis ensures the existence of
paths leading to both a hit and a miss for some accesses).

• Finally, the question of the efficiency of an optimally precise cache analysis in the context of
the “all path feasible” hypothesis is worth investigating. In practice, analyzed binaries are
industrial programwith restricted control flow, and caches have relatively low associativity.
It is thus interesting to look at the practical efficiency of optimally precise cache analyses.

�e goal of this thesis is to address the three points above.

Contributions

Complexity of optimally precise cache analysis While the intuition is that a cache re-
tains the most recently accessed memory words, up to its size, reality is far more complex: what
happens depends on the number of cache levels, the size of each level, the “number of ways”
(also known as the associativity) of the cache and the cache replacement policy. Cache analy-
ses depend on the cache replacement policy, and, in the literature, there is a clear preference
for the LRU (Least Recently Used) policy, notably the well-known age-based abstract analysis of
Ferdinand [AFMW96] and its variations. In contrast, other policies such as PLRU (pseudo-LRU),
NMRU (Not Most Recently Used) and FIFO (First-In, First-Out) have a reputation for being very
hard to analyze [HLTW03a] and for having poor predictability [RGBW07a]. A legitimate ques-
tion is whether these problems are intrinsically difficult, or is it just that research has not so far
yielded efficient analyses. Indeed, issues of static analysis of programs under different cache poli-
cies are not necessarily correlated with the practical efficiency of cache policies. Static analysis
is concerned with worst-case behavior, and policies with approximately equal “average”1 practi-
cal performance may be very different from the analysis point of view. Even though PLRU and
NMRU were designed as “cheap” (easier to implement in hardware) alternatives to LRU and have
comparable practical efficiency [AMM04], they are very different from the worst-case analysis
point of view. We thus explore the complexity of the memory access classification problem under
different replacement policies.

Definitely Unknown memory accesses As mentioned above, analyses like the May and
Must analyses presented in [AFMW96] rely on approximations to classify accesses asAlways-Miss

1By “average” we do not imply any probabilistic distribution, but rather an informal meaning over industrially
relevant workloads, as opposed to examples concocted for exhibiting very good or very bad behavior.

2

or Always-Hit. In this se�ing, one does not have any information on the remaining unclassified
accesses. Indeed, any access not classified can be always a hit (or miss) not detected by the analysis
because of the approximation, or can both lead to a hit or a miss depending on the execution path
in program. We thus introduce a new category, called Definitely Unknown, for distinguishing
those accesses that can lead to both a hit or a miss. �e distinction between Definitely Unknown

and unclassified (Unknown) accesses is important because it characterizes the precision of an
analysis. Unknown accesses can be refined intoAlways-Hit,Always-Miss orDefinitely Unknown by
improving the precision of the analysis. However, Definitely Unknown accesses are a consequence
of the program and the cache analyzed, not of the analysis. �ese accesses have no chance to be
refined into Always-Hit or Always-Miss by improving the precision of the cache analysis. We
then propose an analysis that, similarly to the May and Must analyses of [AFMW96], is able to
approximate the sets of Definitely Unknown memory accesses for LRU caches under the “all path
feasible” assumption.

Exact cache analysis Once the accesses that can not be refined are filtered out, one can
focus on the remaining candidates. For these few candidates, more expensive analyses can be
considered. In particular, it is possible to treat them one by one and, by doing so, to design
specific analysis that focus on a single block, pruning the state space to explore. In this thesis, we
thus propose two approaches to remove the remaining uncertainty about memory accesses, one
relying on a model checker, the other performed by abstract interpretation.

Applications Our last contribution is an application of the analyses design in this thesis in
two different domains. First, the uncertainty about the classification of a memory access can have
serious consequences on the WCET analysis. For instance, it is very important to have precise
information about the cache behavior when analyzing pipelined and superscalar architectures,
since pipeline analysis must consider the two cases “cache hit” and “cache miss” for any memory
access that cannot be shown to be Always-Hit or Always-Miss [LS99, R+06], leading to a state
explosion. �us, imprecise cache analysis may have two adverse effects on WCET analysis. First,
it may lead to an excessive overestimation of theWCET compared to the trueWCET. An industrial
user may suspect this when the upper bound onWCET given by the tools is far from experimental
timings. �ismay discourage the user fromusing static analysis tools. In addition, imprecise cache
analysis might results in excessively high WCET analysis time due to state explosion.

Finally, we explore some security related questions concerning caches. Definitely Unknown

blocks might results in both hits or misses. When this variation is observable by an a�acker and
correlated to the variation of some secrete data, the cache might be the source of information
leakage. We thus propose to use our Definitely Unknown analyses to detect such vulnerabilities.
In addition, we propose some slight modification that allow to spot the origin of the leakage by
tracking the last access to the leaking block.

1.1 Organization of the manuscript

Chapter 2 describes the context of this thesis. It describes how caches work, introduces some
static analysis methods, and present the May/Must analysis of LRU caches. �e problem of clas-
sifying memory accesses into hits andmisses is studied from the complexity theory point of view
in Chapter 3. Among other things, this chapter shows that the usual replacement policies lead
to high complexity classification problems (most analyses are at least NP-hard). Chapter 4 in-
troduces several techniques that allows to derive an optimally precise classification by abstract

3

interpretation and/or model checking. Two applications of cache analyses are investigated in
Chapter 5. First, we study the benefit of a precise cache analysis on the WCET. �en, some as-
pects related to security are investigated. Finally, we discuss and conclude about the results and
possible extensions of our work in Chapter 6.

4

Chapter 2

Context

2.1 Caches

Any computer needs memory to perform arbitrary computations, and this memory is usually
available in different kinds. Registers form the most frequently used one. Located in the CPU
core, they provide high speed and low latency. However, the total amount of memory available
as registers is usually very low. For example, RISC-V architectures only provide 16 or 32 registers
of 32 bits each, for a total of 128 bytes maximum.

Because of this very low capacity, computers rely on another kind of memory, called main
memory, to perform computations. �is main memory offers a much higher capacity (around 8GB
for a recent personal computer), at the expense of a higher latency. Even though compilers tend to
maximize the use of registers over main memory to decrease computation latency, accessing the
main memory is unavoidable. In case the value of the accessed memory is needed immediately,
the processor is simply stalled and waits for the data to be available to pursue the execution.
However, the speed of modern processors is usually far beyond the speed of the main memory.
�us, such a simple computer only consisting in registers and main memory would spend most of
its time waiting for the main memory to issue the requested data and instructions. To avoid this
problem, called theMemoryWall [WM95], modern processors make heavy use of cache memories.

Cache memories offer a capacity/speed trade-off intermediate between registers and main
memory: they are bigger but slower than registers, and smaller but faster than main memory.
To speed computation up, the main idea is to store into caches information that is frequently
accessed in the main memory, reducing the time needed to retrieve the information and thus the
overall execution time. When the CPU issues a memory access, the information is searched in the
cache. If it is found, the access is said to be a cache hit and the information is retrieved quickly.
Otherwise, the access is a cache miss and the information is retrieved from the memory. When
this happens, a copy of the retrieved data is stored into the cache to avoid a future cache miss.
For efficiency reasons, the chunk of copied data contains several consecutive bytes, and not the
accessed byte only. �ese chunks, called cache blocks, have the same size fixed by the hardware,
and are aligned in memory according to this size.

�e idea of speeding up information retrieval by introducing an intermediate memory level
can be repeated. Most modern CPU architectures indeed use several levels of caches, offering
different capacity/speed trade-offs. �e fastest level, which also offers the lowest capacity, is
referred to as L1 cache, and is o�en split into an instruction cache and a data cache. �e next
cache level is referred to as L2, and is bigger but slower than L1 caches. Contrarily to L1 caches,
the L2 cache usually mixes instructions and data, both data and instruction L1 caches use the L2
cache as a backing store. Finally, many architectures nowadays offer a L3 cache (or even a L4

5

cache [KCB+15]), that is shared between different cores. Figure 2.1 shows an example of typical
cache hierarchy.

R
eg
is
te
rs

L1 Data

L1 Inst

L2

Core

R
eg
is
te
rs

L1 Data

L1 Inst

L2

Core

L3 Main memory

CPU

Figure 2.1 – Example of cache hierarchy (Intel Core i3 Haswell)

2.1.1 Blocks and Locality Principles

�e efficiency of caches relies on two key principles:

• Time locality: when a word is accessed, it will be accessed again soon with high probability.

• Spatial locality: when a word is accessed, words close to it will be accessed with high prob-
ability.

On one hand, one should load into the cache large cache blocks to profit from space locality.
Indeed, by loading into the cache words that are contiguous to the recently accessed word, one
increases the chances that the next word accessed will already be cached. On the other hand,
caches should keep words available for the processor as long as possible to benefit from time
locality. �e two principles are thus adversarial: the bigger the cache blocks are, the fewer can
be cached, and the faster they are evicted. In practice, a typical trade-off for the size of memory
blocks is 32 to 64 bytes (see Table 2.2 later in the section). �e area occupied by a memory block
in the cache is called a cache line.

2.1.2 Cache sets and associativity

For efficiency reasons, a given memory block can usually only be stored in the cache at some
locations and nowhere else, to reduce the time needed to retrieve it. �is set of cache lines a block
can be stored in is called a cache set and is fully determined by the block address. Generally, this
cache set is given by a part of the block address (i.e. a part of the address of the first byte in the
block). �us, the cache is split into several cache sets of equal size, each of them associated to
different cache blocks. �e number of cache sets composing the cache is usually a power of 2
varying with the cache size [Rei09]. Two special cases can be distinguished:

6

• �e cache contains a single cache set: the cache is said to be fully associative, a memory
block can thus reside in any cache line.

• �e cache contains as many cache sets as blocks (i.e. each cache set is composed of a single
cache line): the cache is direct mapped, a memory block can only reside in the cache line
associated to it.

Memory Cache

(a) Fully associative cache

Memory Cache

(b) Direct mapped cache

Memory Cache

(c) Associative cache (2 sets)

Figure 2.2 – Example of mapping from main memory to cache

Figure 2.2 illustrates different possible cache set configurations. Each rectangle represents a
memory block, and its color identifies its associated cache set. Arrows designate the possible
cache lines a memory block can be stored in. Figure 2.2a shows the mapping of memory to a
fully associative cache, a memory block can be loaded in potentially any cache line. Figure 2.2b
is an example of direct mapping, a memory block can only be stored in one cache line. Finally,
Figure 2.2c is the intermediate situation: the cache is composed of a few cache sets of several
cache lines each.

As shown on Figure 2.2 different cache configurations are possible for a fixed cache size and
block size, each of them being uniquely defined by its number of cache sets. Alternatively, a
cache configuration can be identified by the number of cache lines (also named number of ways)
contained in a single cache set. �is number is called the cache associativity and is o�en denoted
by k.

For example, caches represented on Figure 2.2a, Figure 2.2b and Figure 2.2c respectively have
associativity 4, 1, and 2. Table 2.1 shows how the number of sets, the cache associativity and the
cache size vary for an example processor1, the Intel Core i3-3110M.

Cache Size Number of sets Associativity Block size

L1 Data 32 KB 64 8 64
L1 Instruction 32 KB 64 8 64
L2 Unified 256 KB 512 8 64
L3 Unified 3 MB 4096 12 64

Table 2.1 – Characteristics of Intel Core i3-3110M CPU

1Data were extracted from the /sys/devices/system/cpu/cpuX/cache/indexY directory on a
laptop using the mentioned CPU.

7

2.1.3 Index, Tag, Offset

As mentioned above, the location of a given byte in the cache is determined by its address. More
precisely, any address can be split into two distinct parts: i) the least significant bits, which form
an offset indicating the location of the byte into the block ii) the remaining part of the address,
which constitutes the block address. �e block address can in turn be decomposed into a tag, and
an index. �e index identifies the unique cache set the block can be loaded in, whereas the tag is
used to distinguish blocks mapping the same cache set. Figure 2.3 recaps the complete slicing of
the address.

Tag Index Offset

Block Address

Figure 2.3 – Address spli�ing

2.1.4 Replacement policies

As mentioned previously, when a memory access results in a cache miss, the block accessed is
issued by the main memory and a copy is loaded into the cache. �e cache set where this block is
stored is given by the address of the block. However, it happens that the cache set a block should
be stored in is already full. In this case, one has to select a block from this cache set and evict it
to make space available for the new block. Note that a block eviction can occur when the cache
is not full, but a set is.

When a block must be evicted, it is selected according to a replacement policy. Many cache
policies exist, offering different efficiency/implementation cost trade-off. Among the most widely
used one can find LRU (Least Recently Used), PLRU (Pseudo-Least Recently Used), FIFO (First In
First Out) and NMRU (Not Most Recently Used).

Cache sets are usually managed independently, i.e. the state of a cache set only depends on the
accesses that map to this cache set. However, in some replacement policies (such as the Pseudo-
Round Robin policy), an access to a cache set influences the other cache sets, thus the state to be
considered is global. In this thesis, we consider only local cache set management.

LRU: Least Recently Used

�e Least Recently Used policy maintains a list of blocks ordered from the most recently used to
the least recently used among each cache set. Upon a miss, the accessed block is loaded at the
MRU (Most Recently Used) position and other blocks are simply shi�ed by one logical position.
Finally, the Least Recently Used block is evicted. Figure 2.4a illustrates the update of a cache set
containing blocks a, b, c and d when accessing block e.

Upon a hit, no block is evicted: the accessed block is simply moved to the MRU position, and
blocks that had beenmore recently used (i.e. before the accessed block) are shi�ed by one position.
�is case is depicted by Figure 2.4b.

Note that hardware implementations of LRU do not actually move memory blocks from one
cache line to another. Instead, the logical position of blocks is maintained separately in additional
registers (see [TAMV19] for details of several possible implementations).

Because the blocks are ordered from the most recently used to the least recently used, the
position of a block among a cache set is usually called its age. For example, block c on Figure 2.4a

8

Miss e

a

b

c

d

3

2

1

0

b

c

d

e

3

2

1

0

(a) LRU update on a miss

Hit b

a

b

c

d

3

2

1

0

a

c

d

b

3

2

1

0

(b) LRU update on a hit

Figure 2.4 – LRU behavior

has age 1 before the access to e, and age 2 a�er the access. �e older a block is, the closer it is from
being evicted. More precisely, a block that has just been accessed will be evicted a�er exactly k
misses [Rei09].

FIFO: First-In First-Out

Miss e

a

b

c

d

b

c

d

e

(a) FIFO update on a miss

Hit b

a

b

c

d

a

b

c

d

(b) FIFO update on a hit

Figure 2.5 – FIFO behavior

Similarly to LRU, the First-In First-Out policy works like a queue: on amiss, the accessed block
is inserted at the head and the block at the tail is evicted. However, contrarily to LRU, the cache
set is le� unchanged in case of a hit. Figure 2.5 presents both cases. One can notice that FIFO
behaves as LRU on a miss (see Figure 2.5a), and as the identity function on a hit (see Figure 2.5b).

�e different behavior of FIFO relatively to LRU has two main implications:

• FIFO is much simpler to implement at hardware level. A simple “pointer” going from one
cache line to the next one is enough to track which block will be evicted on the next miss.
Moreover, the cache update is very fast when it needs to be i.e. in case of a hit, because there
is no action to perform.

9

• A block that has just been accessed can be evicted on the next access. �is happens when
an access to the last block of the queue is followed by a miss which evicts it. �is behavior
makes FIFO caches harder to predict. An example of this phenomenon, called “domino
effect”, is given in [Lun02].

NMRU: Not Most Recently Used

As its name suggests the Not Most Recently Used policy does not provide guarantee as strong as
the LRU policy: instead of ensuring that the least recently used block is evicted, it makes sure the
block evicted on a miss is not the most recently used one. To do so, one extra bit, called MRU
bit, is associated to each cache line. If this bit is a 1, then the cache line might contain the most
recently used block. Conversely, if the MRU bit value is 0, then the associated cache line can not
contain the last block accessed.

To preserve this property, the NMRU policy works as follows:

• On a miss, the first block (from le� to right) which MRU bit is 0 is replaced by the accessed
block, and its MRU bit is flipped to 1.

• On a hit, the MRU bit of the accessed block is set to 1 whatever its value is.

• In both cases if the MRU-bit of the block accessed is the last one to 0, all other MRU-bits
are reset to 0 (this is called a global-flip). �is ensures that at any time, there is at least one
cache line which MRU bit is 0.

a b c d

1 0 0 1
b

a b c d

1 1 0 1
e

a b e d

0 0 1 0

Figure 2.6 – NMRU behavior

�is behavior is illustrated by Figure 2.6. �e first access is an access to block b which is
cached. �e MRU associated to b is then flipped to value 1. �en, an access to e is performed, and
leads to a miss. �e first cache line which MRU bit is 0 is the one containing c. c is thus evicted to
store e and the associated MRU bit is set to 1. Finally, because this bit was the last one with value
0, all other bits are set to 0.

Note that this policy is sometimes referred as Most Recently Used, or PLRU-bit (i.e. Pseudo-
Least Recently Used - bit version, as opposed to the tree version described below).

Similarly to the FIFO policy, blocks stored in an NMRU cache can be evicted quickly. A�er only
two accesses, a block that has just been loaded can already be evicted. However, some approaches
(see [GLYY14]) show that NMRU caches, although not as predictable as LRU caches, are more
predictable than other replacement policies.

PLRU: Pseudo-Least Recently Used

As indicated by its name the Pseudo-Least Recently Used policy approximates the LRU policy. To
do so, cache lines of a set are organized into a full binary tree, in which leaves are cache lines
and other nodes contain bits (called MRU-bits) indicating where is the next block to evict. More
precisely, when a block must be evicted, one recursively looks at the value of a node, starting from
the root. If the node contains 0, then the block to evict should be evicted from the le� subtree,

10

otherwise (when the node contains 1) it should be evicted from the right subtree. �is process is
repeated until a leaf is reached, the associated cache line is then used to store the new block.

In case of a hit, the tree is explored from bo�om to top. Each time a node is encountered, its
MRU-bit is set to protect the accessed block from eviction. In other words, for a given node in the
tree, three outcomes are possible on a hit:

• If none of the right and le� subtrees contain the accessed block, the MRU-bit of the node is
unchanged.

• If the accessed block is in the le� subtree, then the MRU-bit of the node is set to 1.

• If the accessed block is in the right subtree, then the MRU-bit of the node is set to 0.

a b c d

1

1 1

a b c d

0

1 1

a e c d

1

0 1

c e

Figure 2.7 – PLRU behavior (To ease reading, we use arrows to reflect the value of nodes, i.e. when
node’s value is 0 the associated arrow points to le� and conversely)

Figure 2.7 illustrates both hit and miss cases:

• �e first memory block access is c, and it is cached. �us, all arrows on the path from the
root to the cache line containing c are flipped to point away. �e second level arrow already
points towards d, it is thus kept unchanged. On the other hand, the first level arrow now
points to the le� subtree, which does not contain c (the root bit is changed to 0).

• �e next access is amiss because e is not cached. We thus find the block to evict by following
the arrows. In this case, b is evicted and replaced by e. Finally, all bits on the path to e are
flipped.

�is policy is named PLRU because it behaves like the LRU policy in case of misses. More
specifically, on a long sequence of misses, the cache lines are replaced one by one circularly,
mimicking the LRU behavior, up to a permutation of cache lines. However, in the general case,
only log2(k) + 1 accesses might be enough to evict a block that has been stored (see [Rei09]),
whereas LRU requires k accesses. Indeed, the tree-bit of a PLRU cache has height log2(k), and
accessing log2(k) blocks can thus change the arrows direction to point to a given cache line. With
one more access (a miss), the given cache line is evicted.

Writing policies

�is thesis mainly focuses on the analysis of instruction caches. Some of the analyses described
can be used to analyze data caches, but require some modification. �is section describes the
aspects that make data caches differ from instruction caches behavior.

In addition to the replacement policy, the behavior of a data cache is described by a write
policy. Indeed, contrarily to instruction caches, which are usually read-only, data caches must
handle write accesses too.

11

�e first aspect of the write policy consists in specifying whether memory blocks are loaded
(allocated) into the cache in case of write accesses. One usually distinguishes two allocation poli-
cies:

• �e write allocate policy simply consists in loading the block into the cache (if needed, i.e.,
in case of a write miss) before modifying it.

• �e no-write allocate policy does not load the block in case of a write miss. Instead, the
block is modified directly in the next level cache (or main memory). �us, this policy does
not need to evict a block in case of a write miss. �e drawback is that successive writes to
the same block induce several slower writes at the backing store level.

�e second aspect of the write policy concerns the modification of the backing store (i.e., next
level cache or main memory) on a write:

• �e write-through policy forwards the write to the backing store: on a write, the block is
modified both in the cache (if loaded, according to the allocation policy) and in the next
level cache. One advantage of this policy is that it greatly simplifies the coherence protocol
between cache levels. However, it might suffer efficiency penalties when handling repeated
writes to the same block.

• �e write-back policy modifies the block in the cache, mark it as “dirty”, and delays the
modification of the next-level cache to the eviction time. When a block is evicted, the cache
checks if it is marked dirty. If this is the case, the backing store is updated to reflect the new
value of the block (i.e. the evicted block). If the block is not dirty, then the backing store
and the cache are consistent and there is no need to modify the backing store.

One can thus distinguish four possible write policies:

• Write allocate, Write-through: this policy is rarely used because the need to modify the
next-level cache on each write greatly reduces the advantage of allocating the block.

• Write allocate, Write-back: this policy is the most complex to implement but handles se-
quences of writes very efficiently. �e first write to a given blockmight suffer a miss, but the
next writes will not. Finally, the backing store is only modified once, on the block eviction.

• No-write allocate, Write-through: this policy is the dual of the previous one. It does not
handle write sequences very efficiently, but the hardware implementation is simplified.

• No-write allocate, Write-back: again, this policy is rarely used. Indeed, in this configuration,
write-back is only useful if the block has been loaded first on a read, because writes do not
trigger cache line allocation.

�is additional complexity coming from the writing policy make data cache harder to analyze.
Not only these analyses must distinguish between write accesses and read accesses, but they also
need to track the status of dirty bits in case of write-back caches.

Examples of Cache Memories

Table 2.2 shows some examples of cache memories one can find in different processors. Note
that this table only gives a rough idea of the processors behavior and hide many implementation
details. In practice, cache memories are o�en pipelined, and interact with each other through

12

write-buffers and victim caches2, and are tightly coupled with prefetchers or branch predictors.
Table 2.2 shows common values of associativity and cache size, but does not reflect the com-
plete cache behavior. Note that detailled information about cache implementation are not always
available. Some approaches thus try to infer the cache characteristics from a set of experiments
designed do distinguish replacement policies (see [AR14])

CPU Level
Cache
Size

Number
of ways

Block
Size

Number
of sets

Replacement
Policy

Details

Kalray
MPPA

L1I 8K 2 32B 128 LRU -

L1D 8K 2 64B 64 LRU
Write-back/

Write-through
configurable

MPC7450

L1I 32K 8 32B 128 PLRU -

L1D 32K 8 32B 128 PLRU
Write-back/

Write-through
configurable

Intel Core
XScale

L1I 32K 32 32B 32 FIFO -

L1D 32K 32 32B 32 FIFO
Write-back/

Write-through
configurable

Intel Core
i7 Nehalem

L1I 32K 4 64B 128 Unknown
Write-back

No-write allocate

L1D 32K 8 64B 64 Unknown
Write-back

No-write allocate
L2 256K 8 64B 512 Unknown Write-back
L3 8M 16 64B 8192 MRU Write-back

Table 2.2 – Examples of processor caches

2.1.5 Caches and Address Translation

�e analysis of cache behavior require knowledge of the memory address accessed by the pro-
gram. However, these addresses are not fully known at run-time, because of the address trans-
lation mechanism operating systems use to manage the main memory between processes. �is
section describes this mechanism and how it interferes with caches.

Virtual Memory

To avoid memory corruption, each process running on a system has its own memory areas that
no other process can access. However, the location of these areas are unknown at compilation
time, and are a�ributed at running time by the operating system. �e solution to this problem
is to add an abstraction layer to dissociate the physical memory from the memory used by the
program (see [HP12, Chapter 5.7] for more detailed explanations). �e program then operates on
virtual memory, and all manipulated addresses are translated at run time into physical addresses.
�is translation is usually performed by the operating system, and accelerated through hardware
support.

2Victim caches are caches that exclusively store blocks that are evicted from another cache.

13

Virtual Tag

Physical Tag

Offset

Page Table
Virtual Tag Physical Tag

TLB

Virtual Address

Physical Address

Figure 2.8 – Virtual Address Translation

For efficiency reasons, address translation is performed by spli�ing virtual and physical mem-
ory into contiguous blocks called pages (a usual page size is 4 KiB). Because pages are aligned
in memory, the offset designating a byte inside a page is le� unchanged by translation. �e re-
maining part of an address is called the tag, and is translated by inspecting the page table. �is
table being looked up on every memory access translation, it is o�en cached by a dedicated cache
called Translation Lookaside Buffer. �e whole translation process is described on Figure 2.8.

Virtual and Physical Indexing and Tagging

�e translation of the virtual address into the physical one must be taken into account when
designing cache mechanisms, because it might impact the value of the cache tags, indexes and
offsets. Here are some widely used configurations:

• Using the physical address of the blocks to cache them. �is is the simplest solution: trans-
late the address first, and then use the physical address to determine the cache set the block
should be stored in. However, this solution is also very slow, because one waits until the
translation process is finished to perform cache look-up.

• Using the virtual address of the block to cache it. �is solution can bemore efficient than the
previous one because cache look-up and address translation can be performed in parallel,
and address translation is bypassed in case of cache hits. However, using the virtual cache
index and the tag can lead to complications, because the same virtual address can refer to
two different blocks when used in two different processes. In this case, either the operating
system flushes the cache on a context switch, or the cache stores an address space identifier
in addition to the tag to distinguish between the two synonym blocks.

14

• A trade-off between these two strategies consists in using a virtual index and a physical
tag. �e cache set a block is potentially cached in is then identified during the address
translation and the physical tag is available when looking up the cache set. �is solution
however imposes some constraints on cache configuration because both cache offset and
index should fit into the page offset.

• Finally, more complex strategies can be considered by relying on extra hardware support
or by taking advantage that some caches are read-only.

In this thesis, we do not consider the address translation mechanism and we assume that every
memory access is associated with an address known at compile time. �is assumption is obviously
safe in the case of caches using virtual tags and indexes, because the addresses manipulated by the
program and the cache are identical (the virtual addresses are used by both). In this thesis, we only
consider L1 instruction caches, which usually work with indexes and offsets that both fit in the
page offset. Cache offset and index are thus invariant by translation. We thus additionally assume
that mapping from virtual pages to physical pages is injective for pages containing instructions.

2.1.6 Cache configuration in this thesis

�e idea of caches, i.e., storing frequently used data in fast memories to speed computation up,
is simple and natural. However, the practical implementations of hardware caches involve many
efficiency/cost trade-offs, and the mechanisms used to maximize performance of modern CPU are
very complex.

�us, in order to study the possible behaviors of a program in relation to the cache, this thesis
makes several simplifying assumptions. Mainly, we focus on the analysis of L1 instruction caches
that use the LRU policy, for several reasons:

• Analyzing data caches requires knowledge about data addresses, which can lead to complex
static analysis problem (e.g., pointer aliasing analyses), out of the scope of this thesis. We
thus focus on the analysis of instruction caches, because instruction addresses are more
predictable than data addresses. However, in case the addresses of data accessed are known,
some approaches developed in this thesis might be used to analyze data caches, by adapting
them slightly to take the writing policy into account (see Section 6.1).

• Higher level caches usually mix instructions and data, and thus suffer the same analysis
difficulties as data caches. In addition, analyzing caches beyond level L1 requires to take
complex cache coherence protocol into account. Finally, L3 caches are o�en shared, and
can thus suffer from interferences from other cores. Note that a part of the complexity
in analyzing higher-level caches comes from the difficulty of predicting hits and misses
at lower level. �us, a precise cache analysis at level L1 would benefit higher-level cache
analyses.

• Concerning the replacement policy, we focus on LRU because, as shown in chapter 3, it
already leads to high complexity problems. Other replacement policies lead to even harder
classification problems (see Section 6.1).

2.2 Static Analysis

Static analysis consists in proving properties of a programwithout having to execute it, as opposed
to dynamic program analysis, which ensures that the program behaves correctly on some inputs

15

by executing it. �e main reason to perform static analysis rather than dynamic analysis is that
the first can guarantee that a given property is true for all program executions, whereas the second
guarantees that the property is true only on the tested inputs.

�e fundamental drawback of static analysis techniques is that the vast majority of properties
one would like to prove about a program are undecidable. Is is thus impossible to build to a static
analyzer that decides such a property and is correct for any program on any input. One way to
circumvent this problem is to allow the static analyzer to answer “unknown” when deciding if a
property holds or not. In this case, running a static analysis tools leads to one of the following
outcomes:

• the analyzer is able to cover all inputs of the program and check that the desired property
holds. �e program is then accepted.

• the analyzer is able to find at least one input value for which the program behavior is in-
correct. �e program is then rejected.

• the analyzer answers “unknown”, it is not able to ensure the correctness of all behaviors of
the program. �e program might be correct, but is rejected.

�is section introduces two static analysis methods that tackle the undecidability problem:

• Abstract Interpretation computes over-approximations to cover all the possible program
behaviors. If the over-approximations performed are sound, then this approach guarantees
that the desired property holds for any execution of the program. Indeed, if the property
holds for all the behaviors covered by the analysis, then it must hold for the subset of behav-
iors that the program can exhibit. However, if the approximation performed is too coarse, a
correct program (i.e., satisfying the property) might be rejected because spurious behaviors
are taken into account.

• Model Checking consists in checking the correctness of a finite model of the program by
exhaustively exploring all its states 3. Symbolic Model Checking [McM93] relies on an
implicit representation of the state space. Using compact descriptions of Boolean functions,
one can represent a huge state space in a reasonable model.

One can choose an abstraction of the program as a model; such an approach is thus tightly
related to abstract interpretation.

�ese two methods offer different performance performance/precision trade-off, and are thus
complementary. We thus use both of them in this thesis.

2.2.1 Abstract Interpretation

Abstract interpretation [CC77] is a framework used to ensure the soundness of over-
approximations. �e main idea is to characterize all possible program states using a repre-
sentation that is expressive enough to prove the desired property, but allows fast computations.
�is is illustrated on Figure 2.9: green shapes symbolize the evolution of possible programs states
step by step. �e solid arrows are examples of transition from one concrete state to another one.
Blue ellipses represent over-approximations of the sets of concrete states, and dashed arrows

3In Bounded Model Checking [CBRZ01], one truncates the program execution a�er k steps. �e resulting model
is then obviously finite but the method is unsound, as it might miss incorrect behaviors that happen a�er the kth
step.

16

Err1

Err2

Figure 2.9 – Over-approximation of program states

symbolizes the transition between over-approximations. If the over-approximation does not
cover any invalid state (in red on the figure), then the program is safe. In our example, this is
illustrated by the error states Err 1, which are guaranteed to be unreachable because they do
not intersect the blue ellipses (and thus, they do not intersect the green shape). However, it
might be that the program is safe but rejected by the analyzer because of the precision loss.
�is phenomenon, called “false alarm”, corresponds to the Err 2 states on Figure 2.9. �ey are
unreachable (they do not intersect the green shape) but the analysis can not prove it (they
intersect the blue area).

Control Flow Graph

In order to formalize the notion of program execution we use the concept of Control-Flow Graph
(CFG), which represents all the possible execution paths of a program. A CFG is a directed graph
whose nodes, called basic blocks, symbolize sequences of instructions which flow cannot be bro-
ken: once the execution reaches the first instruction of a basic block, the whole block is executed
sequentially until the end. Outgoing edges represent the flow to the next possible basic blocks
that can be executed. A CFG is a data structure that represents all possible program execution
paths. �e program is then modeled by representing each function by its CFG.

i n t r = 1 0 0 ;
whi l e (r ≥ 3) {

r = r −3;
}
r e t u r n r ;

(a) Program Example

r := 100

BB0

r ≥ 3?

BB1

r := r − 3

BB2

return r

BB3

r ≥ 3

r < 3

(b) CFG example

Figure 2.10 – A simple program and its associated Control-Flow Graph

Consider the program of listing 2.10a, which performs a naive Euclidean division. We will use
this program as an example in this section. Figure 2.10b then represents the CFG of this program
and shows how the program executes:

17

• �e program starts at the entry node, basic block BB0, where the value 100 is stored in
variable r.

• �e execution proceeds in basic block BB1. �e current value of r is compared to 3, and
because it is greater, the execution flow goes to basic block BB2.

• In BB2 r is decremented by 3, and thus takes value 97.

• BB1 is executed again and the new value of r is compared to 3.

• A�er 33 iterations of the loop, r has value 1, and the flows finally goes to the final block
BB3.

In this thesis, the notation G = (V,E, v0) denotes a graph where V is the set of basic blocks,
E ⊆ V 2 is the set of edges, and v0 ∈ V is the entry node, which is assumed to be unique. In our
example, we have:

V = {BB0, BB1, BB2, BB3}

E = {(BB0, BB1), (BB1, BB2), (BB2, BB1), (BB1, BB3)}

v0 = BB0

Concrete Semantics

In the context of abstract interpretation, the behavior of a program is captured by its concrete
semantics, which is given by two elements:

• a concrete domainDconc which can precisely express all possible program states. A frequent
choice is to use a map that associates a value to each variable of the program. In the case
of our division example we have one variable r, and there is no need to use such a map.
Instead, one can use the concrete domain4 Dconc = Z that tracks the value of r.

• a set of transformers are introduced to model the effect of program instructions. �ese trans-
formers are functions fromDconc toDconc that, given the value at the entry of a basic block,
computes the value at the end of this block. In our example, the transformers that capture
the program behavior are the following:

– fBB0
: r 7→ 100

– fBB2
: r 7→

{
r − 3 if r ≥ 3

undefined otherwise

– fBB1
: r 7→ r

– fBB3
: r 7→

{
r if r < 3

undefined otherwise

Basic blocks BB1 and BB3 do not modify r, whereas basic blocks BB0 and BB2 set it to
100 and decrement it by 3 respectively (if the guard is satisfied).

Given a finite path in the CFG of the program and an initial value in the concrete domain, one
can apply the sequence of transformers associated to the sequence of blocks met along the path

4Note that some authors call concrete domain what we later call the collecting semantics domain. Here, we use the
same convention than [Rei09].

18

and get the concrete value describing the program state at the end of the path. In our example,
given the path (BB0, BB1, BB2, BB1, BB2), one would obtain for a concrete initial value r:

(fBB2
◦ fBB1

◦ fBB2
◦ fBB1

◦ fBB0
)(r) = (fBB2

◦ fBB1
◦ fBB2

◦ fBB1
)(100)

= (fBB2
◦ fBB1

◦ fBB2
)(100)

= (fBB2
◦ fBB1

)(97)

= fBB2
(97)

= 94

�is value obtained at the end of basic block BB2 a�er two loop iterations is independent of the
initial value of r, because the first instruction of the program erases this initial value and replaces
it by 100.

�is process can be used to define the concrete value a�er the execution of any path, but one
is generally more interested in the set of all possible program states at a given location, whatever
the execution path is, rather than a single concrete value. In our example, one could be interested
in the set of values that reach basic block BB2 for instance, to check that the subtraction never
results in an overflow.

�is computation of all concrete values at a program location v is what the collecting semantics
F : V → P(Dconc) achieves, by aggregating the concrete values obtained for all paths ending at
v.

Before giving a formal definition of the collecting semantics, we illustrate how it can be com-
puted on our example. First, we look at the set of concrete values that can reach the entry block.
At this point r is not initialized yet, and we thus assume that any integer value is reachable.
Hence, we have F (BB0) = Z. �en, a�er the execution of BB0, all these values are replaced by
the assigned value 100. �is gives the following inclusion: F (BB1) ⊇ {100}. By propagating
this information, one get that F (BB2) ⊇ {100} because 100 satisfies the guard condition r ≥ 3.
We thus deduce that {97} is a subset of values reaching the end of BB2, and that therefore it
is a subset of F (BB1). �is lead to the new inclusion F (BB1) ⊇ {97, 100}, by combining the
new reachable value with the set of reachable values previously computed. By iterating this pro-
cess, one gets to the point where we know F (BB1) ⊇ {1, 4, . . . , 97, 100}. To propagate this set
through the edge (BB1, BB2), it is intersected once again with the edge condition r ≥ 3, leading
to F (BB2) ⊇ {4, 7, . . . , 97, 100}. We thus deduce that {1, 4, . . . , 94, 97} is subset of values reach-
able at the end of block BB2. For the first time, this set is included in the set of values reaching
BB1 previously. �e process finally stabilizes, and we know that the exact set of values reaching
BB1 is F (BB1) = {1, 4, . . . , 97, 100}. By intersecting it with the edge guard r < 3, we then
deduce that F (BB3) = {1}. �e final solution obtained by this iterating process is thus:

• F (BB0) = Z

• F (BB1) = {1, 4, . . . , 97, 100}

• F (BB2) = {4, 7, . . . , 97, 100}

• F (BB3) = {1}

Intuitively, the values that reach the beginning of a block can be computed from the values
coming from predecessors. �is leads to the formal definition of the collecting semantics F , as
the least fixpoint solution of the following equation:

19

∀v ∈ V, F (v) = F0(v)
⋃

(u,v)∈E

{fu(c), c ∈ F (u)},

where F0(v) =

{
{c0} if v = v0

{} otherwise

F (u) is the set of values that reach the beginning of the basic block u. �us, {fu(c), c ∈ F (u)}
is the set of values that reach the end of u. By computing the union of all those sets over all
predecessors u of v, one obtains the set of values reaching the basic block v. �e term F0(v),
where F0 : V → Dconc, is added to take the entry value into account. It is always empty, except
for the entry node, which is reached with initial value c0.

�e solution F of this fixpoint equation is guaranteed to exist5. However, the iterating process
described above is not guaranteed to reach a fixpoint in finite time.

Abstract Semantics

To avoid this expensive computation and/or ensure that the process finishes, one computes an
approximation of the concrete collecting semantics instead of the collecting semantics itself. �e
main idea is that a set X ⊆ Dconc of concrete values will be abstracted by a single value α(X).
�is value α(X) then represents all values inX , and possibly other additional concrete values (in
blue in Figure 2.9). �e function α : P(Dconc)→ Dabs is called an abstraction and Dabs is named
the abstract domain.

In our example, one possible abstraction is to use an integer interval instead of a set of integers.
For instance, the set {97, 100} will be abstracted by α({97, 100}) = [97, 100]. �us, α({97, 100})
covers the set {97, 100}, plus the extra values 98 and 99. �is abstraction function α is then
defined by:

α : P(Z)→ Intervals

X 7→ [minX,maxX]

To make the usage of an abstraction meaningful, Dabs and α are required to satisfy some
properties (see [CC77]):

• Dabs must be equipped with an order relation (i.e., reflexive, transitive and antisymmetric)
⊑ that makes it a complete la�ice (Dabs,⊑,⊒,⊔,⊓). �is relation represents the relative
preciseness of abstract values: if x ⊑ y then x is more precise than y.

• α is monotonic: X ⊆ Y ⇒ α(X) ⊑ α(Y), i.e. it conserves the preciseness relation.

�e requirement thatDabs should be a la�ice ensures that any abstract values x and y can be joined
together in one that approximates both: x ⊔ y. �is is needed to compute the abstract value at
the entry of a block that has many predecessors. In the Euclidean division example, a�er the two
loop iterations the value at the beginning of basic block BB1 is built from the value [100, 100]
coming fromBB0, and the value [94, 97] coming fromBB2. �ese two values are joined together
into the single interval [94, 100]. Note that this join operation has lost precision, because it covers
values that were not represented in any of the two joined intervals (namely 98 and 99). If x and

5�is results from Tarski’s fixpoint theorem [Tar55], knowing that F is continuous andDconc is a complete la�ice.

20

y are the abstract values at the end of predecessors, then x ⊔ y is the most precise abstract value
that covers all concrete values represented by x and y.

An equivalent possibility is to express the relation between concrete and abstract value by
introducing a concretization function γ : Dabs → P(Dconc) instead of the abstraction α. �is
concretization associates to an abstract value the set of concrete values it approximates. For in-
stance, the concretization one would use in our example is the following:

γ : Intervals→ P(Z)

[a, b] 7→ {x ∈ Z, a ≤ x ≤ b}

To ensure consistency of the definitions, the (α, γ) pair is required to be a Galois connec-
tion [CC77], i.e. it must satisfy the following properties:

• ∀X ∈ P(Dconc), (γ ◦ α)(X) ⊇ X

• ∀x ∈ Dabs, (α ◦ γ)(x) ⊆ x

α

γ

⊆

γ

α

⊑

P(Dconc) Dabs

Figure 2.11 – Composition of abstraction and concretization

�ese conditions ensure that one cannot lose safety, but only precision, by repetitively apply-
ing α and γ to a value. By abstracting a concrete value x by α(x), we over-approximate it. If the
set resulting from the concretization of α(x) does not contain x, then this over-approximations
is incorrect. For example, by abstracting and concretizing the set {97, 100}, one obtains
γ(α({97, 100})) = γ([97, 100]) = {97, 98, 99, 100}. �is value covers the input {97, 100},
illustrating the correctness of the (α, γ) pair. Figure 2.11 illustrates how these compositions of
concretization and abstraction behave. By applying one a�er the other, one can only go “higher”
in the la�ice and lose precision. Note that when (α, γ) is a Galois connection, α uniquely defines
γ and conversely (see [NNH99, p. 239] for a proof).

Once an abstraction is chosen, one must define the abstract transformer associated to each
basic block. �ese abstract transformers are the abstract counterpart of the concrete transform-
ers and express the program behavior in the abstract domain. One way to define the abstract
transformers is to compose the concrete transformers with the abstraction and concretization
functions. �e obtained functions, f#

v = α ◦ fv ◦ γ, are the most precise abstract transformers
that can be used, and are called the best abstract transformers. In our example, the best abstract
transformers are:

21

• f#
BB0

: [a, b] 7→ [100, 100]

• f#
BB1

: [a, b] 7→ [a, b]

• f#
BB2

: [a, b] 7→

{
∅ if [a, b] ∩ [3,+∞] = ∅

[a′ − 3, b′ − 3] if [a, b] ∩ [3,+∞] = [a′, b′]

• f#
BB3

: [a, b] 7→

{
∅ if [a, b] ∩ [−∞, 2] = ∅

[a′, b′] if [a, b] ∩ [−∞, 2] = [a′, b′]

�is family of transformers can be used to derive the abstract collecting semantics F# : V →
Dabs, which is defined similarly to the concrete collecting semantics but in the abstract domain.
More formally, F# is a solution of the fixpoint equation:

∀v ∈ V, F#(v) = F#
0 (v)

⊔

(u,v)∈E

{f#
u (F#(u))},

where F#
0 = α ◦ F0

In our case, applying the iteration process described previously for the concrete collecting
semantics yield the following solution:

• F#(BB0) = [−∞,∞]

• F#(BB1) = [0, 100]

• F#(BB2) = [3, 100]

• F#(BB3) = [0, 2]

Note that those values completely cover the results obtained by the concrete collecting se-
mantics.

Analysis Soundness

�emain benefit of the abstract interpretation framework is the soundness proofs it automatically
provides. Indeed, it is guaranteed that the fixpoint reached by the abstract collecting semantics
covers all the values collected in the concrete domain:

∀v ∈ V, F (v) ⊆ γ(F#(v))

In addition, this soundness proof can be generalized to any set of safe transformers. Let

(f̂#
v)v∈V and ⊔̂ verifying the two following safety conditions:

∀v ∈ V, ∀x ∈ Dabs, fv(γ(x)) ⊆ γ(f̂#
v (x))

∀(x, y) ∈ D2
abs, γ(x) ∪ γ(y) ⊆ γ(x⊔̂y)

�ese conditions ensure that abstract transformers correctly captured their concrete counter-
part. A safe over-approximations cannot become unsafe by applying the abstract transformer.
�is means that no concrete behavior of the program can be lost during the abstract interpreta-
tion. Note that those conditions trivially hold for the best abstract transformers and the abstract

la�ice join operator. When those conditions hold, any fixpoint F̂# of the following equation:

22

∀v ∈ V, F̂#(v) = F̂#
0 (v)

⊔̂
(u,v)∈E

{f̂#
u (x), x ∈ F̂#(u)},

where F̂#
0 ⊒ α ◦ F0

is guaranteed to satisfy the soundness property:

∀v ∈ V, F (v) ⊆ γ(F̂#(v))

Note that the iteration process described above (sometimes referred as chaotic iteration, or
worklist algorithm) is not guaranteed to terminate in general. However, all abstract domains
introduced in this thesis are finite, and thus, the process is guaranteed to terminate without ad-
ditional requirements.

Many cache analyses introduced in this thesis are formalized in the abstract interpretation
framework. �e different concrete and abstract domains introduced then represented several as-
pect of the cache state/behavior.

2.2.2 Model Checking

Model Checking [EC82] is a static analysis method that is used to ensure that some system satisfies
a given property. �e system is described by a set of variables and is modeled as finite state
machine, and the property to check is modeled as a temporal formula over those variables. �e
role of the model checker is then to ensure that the finite state machine evolves safely according
to the formula.

i n i t (a) : = t r u e
i n i t (b) : = t r u e
nex t (a) : = c a s e

b : f a l s e
a : t r u e
t r u e : { f a l s e , t r u e }

next (b) : = c a s e
a & b : t r u e
t r u e : { f a l s e , t r u e }

(a) Example of boolean program

ab

s1

ab̄

s2

āb

s3

āb̄

s4

(b) Example of Finite State Machine

Figure 2.12 – A simple program and its associated Kripke structure

To give the intuition of how model checkers work, this section focuses on the model check-
ing of Boolean programs (i.e. programs manipulating boolean variables only). Most modern
model checkers support integer variables, sometimes relying on a Satisfiability Modulo �eory
solvers, but we do not consider those complex solvers in this thesis. Consider the Boolean (non-
deterministic) program of Listing 2.12a. �is program is composed of two parts:

• �e initialization of all variables. In our cases, both a and b are initially set to true.

• �e definition of the transition relation, which express the evolution of variable from one
step to the next. Here, both a and b evolve differently depending on their current value. for
instance, the next value of a is computed as follows:

23

– If b is true, then next value of a will be false.

– Otherwise, if a is true, the next value of a will be true.

– Finally, when the default case applies (i.e when both a and b are false), the next value
of a is chosen non-deterministically.

Note that such a program can use bounded integers. One can simply use one boolean variable
for each bit of the integer, and encode arithmetic operations into the transition relation. �is
might however highly increase the program complexity.

�e program 2.12a contains two boolean variables a and b, and is thus composed of four states:
one for each valuation of the variables. �ose states can then be connected according to the
transition relation, forming the finite state machine depicted on Figure 2.12b. For example, in
state s1, where both a and b are true, one knows from the transition relation that a and b will
respectively take the values false (first case of the next(a) affectation) and true (first case of the
next(b) affection). �e only state reachable from s1 is thus the state s3, where a is false and b is
true. Note that non-deterministic affectations lead to several successors for the same state.

Formally, the program model is a Kripke structureM = (S, T, I, L), where S is the set of
states, T ⊆ S2 is the transition relation, I ⊆ S is the set of initial states and L : S → P(V ar) is a
label function with associates to a state the set of variables that are true in this state. For instance,
in the model shown on Figure 2.12b we have:

• S = {s1, s2, s3, s4}

• T = {(s1, s3), (s2, s1), (s2, s2), (s3, s3), (s3, s4), (s4, s1), (s4, s2), (s4, s3), (s4, s4)}

• I = {s1}

• L(s1) = {a, b} , L(s2) = {a}, L(s3) = {b} and L(s4) = {}

Temporal logic

Temporal logics are extensions of propositional logic with temporal operators. �ey can thus ex-
press relations between states of a program model and distant by several time steps. Temporal
formulas are useful to express complex properties of a program, involving several states at dif-
ferent time. For example, one can express for the program 2.12a that there is no way to go from
a state where both a and b are true to a state where they are both false in a single step. �is
property can be expressed by the formula (a∧ b)⇒ ¬X(¬a∧¬b)). �eX in the formula stands
for “neXt” and is temporal operator that express property of the next state. Informally, s4 is the
only state where both a and b are both false. �us,X(¬a∧¬b) designates states from which s4 is
immediately reachable (namely s3 in our example). �e precise semantics of temporal operators
is presented later in this section. First, we define the syntactically valid formulas.

Temporal formulas can express property about a single state, or property about a whole path,
and are classified into state formulas (noted φ) and paths formulas (noted ψ). �e grammar of
Figure 2.13 shows all combination allowed in the process of building those two kinds of formulas.

To formalize the semantics of temporal formulas, we first define the notion of path in a Kripke
structure: a pathw is an infinite word of statesw = (w0w1 . . .), where allwi ∈ S, and (wi, wi+1) ∈
T . We also note wi the path extracted from w that starts at step i: wi = (wiwi+1 . . .).

In addition to the usual proposition logic operators¬,∨,∧ that conserve their usual semantics,
six other operators (All, Exist, neXt, Future, Globally and Until) are introduced:

• �e state formula Aψ holds in state s if ψ holds for all paths starting at s.

24

φ := true

φ := false

φ := p, where p ∈ V ar

φ := ¬φ1

φ := φ1 ∨ φ2

φ := φ1 ∧ φ2

φ := Aψ1

φ := Eψ1

ψ := φ1

ψ := ψ1 ∨ ψ2

ψ := ψ1 ∧ ψ2

ψ := Xψ1

ψ := Fψ1

ψ := Gψ1

ψ := ψ1Uψ2

Figure 2.13 – Temporal formula grammar

• Similarly, the state formula Eψ holds in state s if ψ holds for at least one path starting at s.

• Xψ holds on the path w if ψ holds on the path w1.

• Fψ holds on the path w if ψ holds on at least one of the path wi, where i ≥ 0.

• Gψ holds on the path w if ψ holds on all paths wi, i ≥ 0.

• ψ1Uψ2 holds on the path w if there is an i ≥ 0 such that ψ2 holds on w
i and ψ1 holds on all

the paths wj, j ≥ i ≥ 0.

Using these operators, one can express correct behaviors of the program. For example, prop-
erty AG((¬p) ∨ Fq) states that if variable p is true at any time during an execution, then q will
become true later on.

�is logic system that allows mixing path quantifiers and temporal operators freely is called
CTL* [EH83]. In the following, we describe two subsets of CTL* that are less expressive but lead to
easier model checking problems: Linear Temporal Logic [Pnu77] (LTL) and Computational Tree
Logic [EC82] (CTL).

LTL is the fragment of CTL* obtained by restraining the use of path quantifiers. More formally,
all LTL formulas have the form Aψ, where ψ does not contain any of the quantifier A or E.
Branching over paths is thus only allowed at the very beginning of the formula.

CTL is the subset of CTL* obtained by allowing temporal operators X , F , G and U only
immediately a�er a path quantifier A or E, but nowhere else. �is is equivalent to extend the
propositional logic with operators AX , AF , AG, AU , EX , EF , EG and EU . CTL can thus be
formalized using state formula only. An example of CTL formula is AG(p ∧ EXq), which states
that at any point of any execution p is true and there is one successor state where q is true.

One way to check the validity of a CTL formula for a given Kripke structure is to use the
labeling algorithm. �is algorithm works by computing for each sub-formula the set of states
that satisfy it. Starting from the leaves, the syntax tree of the formula is decorated in a bo�om-up
fashion with these sets. First, each atomic proposition p is associated to the set of states where
it is true: {s ∈ S, p ∈ L(s)}. For a non-atomic formula, the satisfying set is built from the
sets associated to children sub-formulas. For example, the satisfying set of φ1 ∧ φ2 is built by
intersecting the satisfying sets of φ1 and φ2. Temporal operators EX and AX are handled by
computing the preimage of a set by the transition relation T . For instance, the satisfying set of
AXφ is the set of states which immediate successors are all in satisfying set of φ. For the more
complex operators F , G and U , the satisfying sets are computed as a fixpoints. Adding a state to

25

the set might lead to new states satisfying the formula. �ose new states are thus added to the
satisfying set, and so on, until there is no additional state to add.

E[¬aU AX(a ∨ b)]

¬a AX(a ∨ b)

a
a ∨ b

a b

Figure 2.14 – the syntax tree of formula φ = E[¬aU (AX(a ∨ b))]

For example, checking that the property φ = E[¬aU (AX(a∨ b))] holds in the initial state of
the Kripke structure of Figure 2.12b is done step by step, in the following way:

• First, the formula is converted to its syntax tree, represented on figure 2.14. Each node is
associated to a sub-formula for which the satisfying set must be computed.

• �en, the leaves of the tree can be evaluated. In our case, property a is true in states s1 and
s2 and the satisfying set associated to the atomic formula a is thus {s1, s2}. Similarly, the
satisfying set of b is {s1, s3}.

• Using this information, one can compute the satisfying set of the parent node a ∨ b, by
performing the union of satisfying sets of sub-formulas. a state s satisfies the property a∨ b
if it belongs to the set {s1, s2, s3}.

• One can thus examine the parent nodeAX(a∨b). By definition ofAX , the states satisfying
this property are the ones which all immediate successors satisfy a∨ b, i.e. they all belongs
to the satisfying set of a ∨ b. �e satisfying set of AX(a ∨ b) is thus {s1, s2}. Indeed, s3
and s4 do not belong to this satisfying because one of they successor (namely s4), does not
belong to {s1, s2, s3}.

• Computing the satisfying set associated to φ is then done by exploring the Kripke structure
in a backward manner. At beginning, the set associated to φ is {s1, s2}, the satisfying set
of AX(a ∨ b). �en, s4 is added, because it satisfies ¬a and one of its successors (s1 or
s2) belongs to {s1, s2}. Finally, the process stabilizes and one get the satisfying set of φ:
{s1, s2, s4}. �e initial state s1 of the Kripke thus satisfies property φ.

Decision Diagrams

Working with the Kripke structure associated to a program is usually very costly, because of the
exponential size of the structure in the number of variables. One solution to avoid the state space
explosion is to use decision diagrams to represent it compactly.

Decision diagrams are representations of Boolean formulas that are similar to decision trees.
Given a Boolean formula, one can build the associated decision tree by removing the variables

26

1 0 1 0 1 0 0 0

z z z z

y y

x

(a) Example of Decision tree

1 0

z z

y y

x

(b) Example of compacted decision tree

Figure 2.15 – A decision tree and the compacted version

one by one. To remove a variable, one simply substitutes it in the formula by true or false, leading
to two subtrees: one where the variable has been replaced by true, the other where it has been
replaced by false. �e process is repeated on both subtrees until no variable remain. A leaf then
represents the truth value of the original formula when se�ing the variables according to the path
that reaches it. For example, the decision tree associated to the formula ϕ = z ∧ (x∨ y) is shown
on Figure 2.15a. We use 1 to represent the value true, and 0 to represent false. �e variable shown
on each node is the one that is evaluated. We use a solid arrow when it is evaluated to true, and
a dashed arrow when evaluated to false.

�is representation as decision tree can be compacted in several ways. A first improvement
consists in using a single occurrence of all identical subtrees. �is process leads to a Directed
Acyclic Graph, as shown on Figure 2.15b.

�is DAG structure can be additionally compacted, by applying one of the two following re-
duction rules:

• Removing nodes for which both subtrees are identical. �is leads to a new structure called
Binary Decision Diagrams [Jr.78] (BDD). In our example, the obtained diagram is repre-
sented on Figure 2.16a. As in decision trees, a path in a BDD is equivalent to a partial
assignment of the variables. �e absence of a variable on a path means that the skipped
variable has no influence on the truth value of the formula.

• Removing nodes for which the true subtree (plain arrow) points to false. �e obtained
structure (illustrated on Figure 2.16b) is called a Zero-Suppressed Decision Diagram [Min93]
(ZDD). �ese diagrams are particularly useful to represent formulas that evaluate to false
for most variable assignments. Indeed, many nodes can be removed in this case, leading to
a very small representation.

�ese structures have two properties that make them suitable to represent the state space
of a Kripke structure. First, for a given order of the variables, every formula has a canonical
BDD (or ZDD) representation. Moreover, many operations can be performed efficiently on these
structures: conjunction, intersection and projection of over a set of variables (and negation for
BDDs). Finally, the re-use of some part of the diagrams at several location make them suitable for
memoı̈zation.

Note that those representations only form one possible solution to solve efficiently model
checking problems. Other algorithms exist. Among them, one can cite IC3 [SB11], and all the
counter-example guided abstraction-refinement [CGJ+00] approaches.

27

1 0

z

y

x

(a) BDD example

1 0

z

y y

x

(b) ZDD example

Figure 2.16 – Comparison of Binary and Zero-Suppressed Decision Diagrams

2.2.3 Cache analysis methods in this thesis

In this thesis, we introduce several precise cache analyses, performed using by abstract interpre-
tation and model checking techniques.

On the one hand, model checking has the advantage of being usable in a “black-box” manner:
one does not need to understand the complex algorithms and heuristics used by a model checker
to use it. Providing a model of the program and a property to prove is sufficient. However, this
advantage might also be a drawback because understanding why a model checker fails to prove
some property or why it needs more time than expected requires deep knowledge about the model
checker internals.

On the other hand, abstract interpretation requires more work up front (one has to provide
an abstract domain and safe transformers and join operators), but offers more control on the
computation performed.

Some analyses in this thesis get the best of these two worlds, by combining abstract interpre-
tation methods using ZDDs for efficient representation of abstract values.

2.3 State of the Art in Cache Analysis

As mentioned in Chapter 1, it is interesting to statically predict the cache behavior, by classifying
memory accesses into the ones that lead to cache hits and the ones that lead to cache misses. �e
aim of a cache analysis is to provide such kind of classification.

2.3.1 Cache Conflict Graph

A first observation that eases cache analysis is that cache sets usually work independently of
each other and can be analyzed separately6. �us, when analyzing one cache set, accesses other
cache sets are simply ignored. �is simplification is possible for many replacement policies, and
one only needs to abstract a single cache set to perform the analysis. In this thesis, we focus on
the LRU replacement policy, and we thus analyze cache sets one by one. A convenient structure
for modeling a program in this case is the cache conflict graph (CCG) associated to the program.
Each node of a CCG represents one or more consecutive accesses to a single memory block that

6�is assumes instructions are fetched in order and that there is no speculative prefetch.

28

l-block 1

l-block 1

l-block 2

l-block 2

BB0

l-block 3

l-block 3

l-block 4

BB1

l-block 4

l-block 5

l-block 5

BB2

(a) Control Flow Graph

l-block 5
l-block 4

l-block 4
l-block 3

l-block 2
l-block 1

(b) Cache Conflict Graph

Figure 2.17 – A CFG and the associated CCG for a fully associative cache

maps the given cache set, whereas edges represent the program control-flow (similarly to edges
in a CFG). For example, Figure 2.17b represents the CCG associated to the program whose CFG
is represented on Figure 2.17a, in the case of a single cache set. �e example program contains 10
instructions, spread into 5 memory blocks (one usually uses the term “line blocks”, or “l-block” to
distinguish them from basic blocks). �e CCG is then obtained from the CFG by spli�ing the basic
blocks at the boundaries of l-blocks. Note that a single l-block, like l-block 4 in our example, can
be accessed in several basic blocks. In this case, it is simply referenced twice in the cache conflict
graph.

Figure 2.18b shows the CCGs of the same program (on Figure 2.18a), in the case of an asso-
ciative cache with two cache sets. �e mapping from l-block to cache sets is given by colors. One
CCG is then built for each cache set, and it does not represent references to other cache sets. Note
that in the case of a non fully-associative cache, a CCG might not be strictly a graph, but rather a
multi-graph. Indeed, if two consecutive references to the same cache set are far from one another,
there might be several paths going from one to the other without any other reference to the same
cache set in between. In other words, from amemory access, there might be several possible paths
to reach the next access to the same cache set.

2.3.2 Analysis of LRU caches

�e LRU replacement policy manages each cache set separately, and each of them is thus analyzed
in isolation. An LRU cache set is completely defined if one knows the exact age of blocks in this
cache set. �us, one possible concrete domain to describe an LRU cache set is to use a function
that maps each block to its age. When a block is cached, its age is between 0 and k−1, where k is
the cache associativity. If not cached, one simply associates to the block an age value beyond the
cache associativity (usually k or+∞) For example, a�er accessing blocks a, b, c, d, e and f (in this
order), a 4-ways cache is described by a concrete value that maps a, b, c, d, e and f respectively

29

l-block 1

l-block 1

l-block 2

l-block 2

BB0

l-block 3

l-block 3

l-block 4

BB1

l-block 4

l-block 5

l-block 5

BB2

(a) Control Flow Graph

l-block 5

l-block 3

l-block 1

l-block 4

l-block 4

l-block 2

(b) Cache Conflict Graph

Figure 2.18 – A CFG and the associated CCG for a 2-sets associative cache

to 4, 4, 3, 2, 1 and 0. �e most recently accessed block f is mapped to 0, whereas evicted blocks
a and b both map to k = 4.

Using Blocks to denote the set of memory blocks used by the program, the concrete domain
is then:

DLRU = Blocks → {0, . . . , k}

A convenient notation to represent a concrete cache set is to list the blocks cached according
to their ages. �e list has length k and thus represent blocks which have an age between 0 and
k − 1. Uncached blocks have age k and are not represented. For example, the concrete state that
maps block a to age 0, block b to age 1 and every other block to k is represented by [a, b,⊥,⊥].
�e symbol ⊥ is used to represent an empty line, i.e. a line that does not contain a valid cache
block because of a cache flush.

Using this notation, Figure 2.19 shows the fixpoint reached by the collecting semantics when
analyzing the represented CCG. When a block is accessed, it is moved to the head of the list and
blocks that were younger move by one position toward the tail. One can notice at the end of the
program that a�er k = 4 consecutive accesses, the state of the cache converges to a single value.
�is particularity of the LRU replacement policy makes it highly predictable; it is not true for
other replacement policies. Note also that we assumed an empty cache state at the beginning of
the program, because representing all possible concrete values would lead to a huge set.

To formally define the concrete transformer associated to a basic block, we use an auxiliary
function update that, given the current cache state q and the block accessed b, computes the

30

f
c
f
b
d

e
d

c

b

a

{[f, c, b, d]}
{[c, f, b, d]}
{[f, b, d, e], [f, b, d, a]}
{[b, d, e, c], [b, d, a,⊥]}
{[d, e, c, b], [d, b, a,⊥]}
{[e, d, c, b], [b, a,⊥,⊥]}

{[e, d, c, b]}
{[d, c, b, a]}
{[c, b, a,⊥]}

{[b, a,⊥,⊥]}
{[a,⊥,⊥,⊥]}
{[⊥,⊥,⊥,⊥]}

Figure 2.19 – LRU collecting semantics fixpoint

resulting cache state:

update : DLRU × Blocks → DLRU

(q, b) 7→ q′

where ∀b′ ∈ Blocks , q′(b′) =

0 if b = b′

q(b′) if b 6= b′ ∧ q(b′) > q(b)

q(b′) + 1 if b 6= b′ ∧ q(b′) ≤ q(b) ∧ q(b′) < k

k otherwise

�is update function is the one used on Figure 2.19 to compute the new cache state obtained when
accessing a block b. Four possible cases can be distinguished to compute the new age of a block
b′:

• If b′ is the block accessed, then it is moved at the most recently used position, i.e. its new
age is 0.

• If b′ is older than the accessed block, then b′ is not shi�ed during the update.

• If b′ is cached and younger than the accessed block, then b′ is shi�ed by one logical position
toward the eviction.

• If b′ was already evicted, then it stays out of the cache

Note that this concrete domain allows representing impossible cache configurations by map-
ping several blocks to the same age (different from k). Indeed, a real cache line can only store one
block at a time. �is is however not a problem because a consistent concrete value (i.e that does
not map two blocks to the same age except for age k) always leads to a consistent value when
updated. �e strictness of the comparison between ages of b and b′ can thus be changed: the case
q(b) = q(b′) ∧ q(b) < k never happens for a consistent concrete cache.

31

2.3.3 Ferdinand’s May and Must analyses

Ferdinand’s approach was the first cache analysis proposition relying on abstract interpretation.
Its scalability and soundness make it one of the most widespread cache analyses in WCET esti-
mation tools. �e approach analyzes LRU caches and consists in two separated analyses:

• �e must analysis is used to predict that some memory accesses always lead to a hit. �is
is done by computing an over-approximation of the age of all block stored in the cache.

• Conversely, the may analysis is used to predict misses, and it relies on a safe under-
approximation of the age of all blocks to do so.

To ensure that some memory access results in a hit, the must analysis computes the “must
abstract state” associated to a program point. �is must cache state guarantees that some blocks
must be cached at a given location by over-approximating their ages. Indeed, a memory block
which has an age lower than k when it is accessed is guaranteed to be a hit. �e must analysis
thus maintains upper-bounds on the ages of blocks using conservative transformers, and those
bounds are then compared to the cache associativity to classify blocks.

�e must abstract domain is composed of functions that map blocks to valid upper-bounds:
DMust = Blocks → {0, . . . , k}. A set of concrete cache states is then represented by a
function that maps a block to the maximum age it may have in this set. For example, the set
{[a, b,⊥,⊥], [b, c, a,⊥]} is represented the abstract value [⊥, b, a,⊥]7. a, having age 0 in the first
concrete cache state and age 2 in the second, is mapped to 2, which is a valid upper-bound. c has
ages k and 1 in the concrete states and is thus mapped to k.

More formally, the must analysis is defined by the following Galois connection:

αMust : P(DLRU)→ DMust

Q 7→ q̂Must

where ∀b ∈ Blocks , q̂Must(b) = max
q∈Q

q(b)

γMust : DMust → P(DLRU)

q̂Must 7→ {q ∈ DLRU , ∀b ∈ Blocks , q(b) ≤ q̂Must(b)}

Note that contrarily to a concrete value, a must abstract value can map several blocks to the
same upper-bound below k. We thus extend the previously used notation by bracing blocks that
map to the same value. For example, αMust({[a, d, b,⊥], [c, b, a,⊥]}) = [⊥,⊥, {a, b},⊥] maps
both a and b to the bound 2.

In order to compute the abstract collecting semantics fixpoint, one should define the abstract
join operator and the abstract transformers associated to basic blocks.

In the case of the join, one can simply use the maximum of the two given bounds: if a block b
is guaranteed to have age less than x on one path and less than y on the second path, then its age
is necessarily less than max(x, y). �is gives us the following join operator:

⊔Must : DMust ×DMust → DMust

(q̂Must , q̂
′
Must) 7→ q̂′′Must

where ∀b ∈ Blocks , q̂′′Must(b) = max(q̂Must(b), q̂
′
Must(b))

7We reuse the same notation used to represent concrete cache states in Section 2.3.2 to represent abstract cache
states.

32

�is operator is trivially sound: γMust(q̂Must ⊔Must q̂
′
Must) ⊇ γMust(q̂Must) ∪ γMust(q̂

′
Must).

As for the concrete transformers, the abstract transformers can be defined as the composition
of an update function that expresses how a must abstract cache state is modified when accessing
a block b. �is updateMust function looks like its concrete counterpart, but manipulates abstract
values:

updateMust : DMust × Blocks → DMust

(q̂Must , b) 7→ q̂′Must

where ∀b′ ∈ Blocks , q̂′Must(b
′) =

0 if b = b′

q̂Must(b
′) if b 6= b′ ∧ q̂Must(b

′) ≥ q̂Must(b)

q̂Must(b
′) + 1 if b 6= b′ ∧ q̂Must(b

′) < q̂Must(b) ∧ q̂Must(b
′) < k

k otherwise

�is function shows four cases analogous to the concrete one, but reasoning about upper-
bounds is more challenging. Intuitively, increasing the upper-bound by one on every access is
safe, because the concrete age of a block can not increase faster. �us, the tricky part is to derive
a condition under which it is safe not to increase the upper-bound, as done in the second case.
One can check its correctness as follows:

If q̂Must(b
′) is greater than the concrete age of b′ then it is safe to keep it untouched because

it would still hold even if b′ is shi�ed. We can thus focus on the case where q̂Must(b
′) is a tight

bound. �en, the condition q̂Must(b
′) ≥ q̂Must(b), together with the tightness of q̂Must(b

′), ensures
that b is younger than b′ in the concretization. �us, b′ is not be shi�ed when accessing b, and the
previous bound still holds.

More formally, the soundness of the updateMust function is expressed by the following lemma,
which is proved in [AFMW96]:

∀q̂Must ∈ DMust , ∀b ∈ Blocks, γMust(updateMust(q̂Must , b)) ⊇ {update(q, b), q ∈ γMust(q̂Must)}

f
c
f
b
d

e
d

c

b

a

[f, c, b, d]
[c, f, b, d]
[f, b, d,⊥]
[b, d,⊥,⊥]
[d,⊥,⊥,⊥]
[⊥,⊥,⊥, b]

[e, d, c, b]
[d, c, b, a]
[c, b, a,⊥]

[b, a,⊥,⊥]
[a,⊥,⊥,⊥]
[⊥,⊥,⊥,⊥]

Figure 2.20 – Result of Ferdinand’s Must analysis

33

Figure 2.20 shows how the described analysis works on the previous example of Figure 2.19.
�ree noticeable facts are illustrated in this example:

• Firstly, the bounds computed by the must analysis indeed cover all the concrete values
obtained previously.

• Secondly, the analysis can ensure some accesses are always hits. For instance, the very last
access to f at the end of the program is guaranteed to be a hit, because f is in the must
cache when accessed.

• Finally, the analysis is incomplete and fails to classify some accesses. For example, the last
access to b is necessarily a hit (at most 3 distinguished blocks have been accessed since b
was loaded) but the must analysis is too coarse to classify it as Always-Hit. Indeed, b is not
in the must cache when accesses for the second time.

�e may analysis is very similar to the must analysis. Instead of maintaining a safe upper-
bound for each block, it uses a lower-bound. When this lower bound is equal to k, one knows for
sure that the block is not cached. For example, the set of concrete values {[a, b,⊥,⊥], [b, c, a,⊥]}
is represented by the abstract value [{a, b}, c,⊥,⊥].

Formally, the may analysis uses the following abstraction/concretization Galois connection:

αMay : P(DLRU)→ DMay

Q 7→ q̂May

where ∀b ∈ Blocks , q̂May(b) = min
q∈Q

q(b)

γMay : DMay → P(DLRU)

q̂May 7→ {q ∈ DLRU , ∀b ∈ Blocks , q(b) ≥ q̂May(b)}

Concerning the abstract transformers, the may analysis looks like its must counterpart:

updateMay : DMay × Blocks → DMay

(q̂May , b) 7→ q̂′May

where ∀b ∈ Blocks , q̂′May(b
′) =

0 if b = b′

q̂May(b
′) if b 6= b′ ∧ q̂May(b

′) > q̂May(b)

q̂May(b
′) + 1 if b 6= b′ ∧ q̂May(b

′) ≤ q̂May(b) ∧ q̂May(b
′) < k

k otherwise

Note that in the case of the may analysis, which computes lower bounds, a safe choice when
updating a block not accessed could be to keep the previous bound unmodified. Contrarily to the
must analysis, one has to be careful when increasing the lower-bound value. Again, the critical
case is when the lower-bound on b′ is tight. Yet, in this case the condition q̂May(b

′) ≤ q̂May(b)
guarantees that b′ is younger than b, and q̂May(b

′) may be increased safely.
Unsurprisingly, the join operator is obtained by taking the minimum of the available bounds:

⊔May : DMay ×DMay → DMay

(q̂May , q̂
′
May) 7→ q̂′′May

where ∀b ∈ Blocks , q̂′′May(b) = min(q̂May(b), q̂
′
May(b))

34

f
c
f
b
d

e
d

c

b

a

[f, c, b, d]
[c, f, b, d]
[f, b, d, {a, c, e}]
[b, d, {a, c, e},⊥]
[d, {b, e}, {a, c},⊥]
[{b, e}, {a, d}, c,⊥]

[e, d, c, b]
[d, c, b, a]
[c, b, a,⊥]

[b, a,⊥,⊥]
[a,⊥,⊥,⊥]
[⊥,⊥,⊥,⊥]

Figure 2.21 – Result of Ferdinand’s May analysis

Figure 2.21 illustrates the may analysis on the previous example. As for the must analysis, one
can notice that:

• �e bounds computed by the may analysis cover the concrete collecting semantics.

• �e analysis ensures some accesses, like the very first access to a, are always misses.

• Finally, the analysis is incomplete: the last access to c is a miss but c belongs to the may
cache at the access location.

2.3.4 Persistence Analysis and Loop Unrolling

Program loops can be handled by may and must analyses without any change: backward edges
are simply treated like any other edge. �e fixpoint computation by chaotic iterations is still
guaranteed to finish in presence of loops. Indeed, the abstract domain being finite (the number of
blocks in the program is finite, and the cache associativity is fixed), it can not contain any infinite
strictly increasing chain.

However, loop and if-then-else tests can introduce imprecision because of joins. �is precision
loss is mainly due to small loops (loops which body completely fits into the cache) that tend to
behave differently in the first iteration of the loop. Indeed, blocks forming the loop are usually
accessed for the first time in the first loop iteration, leading to misses. If the loop is small enough,
they stay in the cache from one loop iteration to the next and all accesses beyond the first iteration
are hits. May and must analyses are however not expressive enough to classify an access as a miss
in the first iteration and as a hit a�erward. If both hits and misses are possible, then the access is
le� unclassified by the analyses: it is in the may cache, but not in the must cache.

Some approaches have been specifically designed to tackle this problem. Among these ap-
proaches, one can cite the “loop unrolling” method and all the variation of persistence analyses.

Loop unrolling consists in modifying the CFG of the program by duplicating the nodes of the
loops to distinguish the first iteration from the others 8. �is modification does not change the
possible sequences of accesses the program might perform, but simply allows the may and must

8�is unrolling inside an analyzer is different from unrolling the first iteration using a compiler prior to analyzing

35

e d

c

b

a

(a) CFG of the original program

e d′

c′

b′

d

c

b

a

First iteration

Next iterations

(b) CFG obtained by unrolling the loop once

Figure 2.22 – Modification of the CFG by unrolling a loop

analysis to treat the first occurrence of an access differently. An example of loop unrolling is
shown on Figure 2.22. On the le� side (Figure 2.22a), the original program is composed of five
accesses, to blocks a, b, c, d and e, and have a loop around accesses b, c and d (b is the test, and c
and d form the loop body). In this situation, starting from an empty initial cache, the usual may
and must analyses would not be able to classify accesses to b, c and d: they can not be classified
as Always-hit because the first iteration leads to misses, and they can not be classified as Always-
miss because of the remaining iterations. However, by unrolling the first iteration of the loop, one
obtain the equivalent program of Figure 2.22b. On this new program, the may analysis classifies
the first accesses to b, c and d as Always-miss (assuming an empty initial cache), whereas the
must analysis classifies other accesses (noted with a prime) as Always-hit. �is approach, which
consists in virtually unrolling loops and inlining function calls, is described in [MAWF98].

Another family of approaches, called persistence analyses, can also be used to deal with loops
in the case of LRU caches. Instead of classifying accesses as hits or misses, these analyses try to
classify memory blocks as persistent or not. Intuitively, a block is said to be persistent if it can
not be evicted from the cache once loaded. �is information is particularly useful in the case of
WCET estimation tools, because the miss penalty of a persistent block accessed in a loop can be
considered only once. Contrarily to the may and must analyses which classify single accesses,
persistence analyses consider the whole set of accesses to a memory block and try to bound the
number of misses this set might suffer.

A naive approach consists in computing for each program point the set of memory blocks that
have potentially been accessed since the beginning of the program: when an access is performed,
the block accessed is added to the set of blocks already met. �e size of the set obtained at a
memory access location is then compared to the associativity to know if the block accessed is

the code. A compiler unrolling a loopwill duplicate instructions, pu�ing them at different addresses and thus possibly
in different cache blocks. In contrast, the analyzer duplicates instructions (or simulates duplication by iteration
techniques) while keeping them at the same address for purposes of instruction cache analysis.

36

persistent so far or not. By doing so, one can deduce that the accesses to blocks a, b, c and d of
the example on Figure 2.22a can suffer at most one miss each for a cache of associativity k = 4.
Indeed, the whole loop fits in the cache.

Obviously, such a naive approach where sets of potentially accessed blocks keep growing
would fail on any real program. �us, some approaches introduce a notion of scopes to focus on
one loop at a time and reset the sets of reachable blocks. Other persistence analyses are based
on the may and must analyses but use additional mechanisms to handle loops gracefully [BC08].
Many variations of this approach have been proposed, offering different precision/computation
trade-off. See [Rei18] for an overview of existing persistence analyses.

�e closest analysis to our work is the persistence analysis presented in [HJR11]. Indeed, it
uses the notion of younger sets to classify memory blocks as persitent or not. �e younger set of
associated to a block a is the set of blocks younger than a at the given location. By knowing the
younger set of a block, one knows exactly its age and when it will be evicted. By overapproxi-
mating the younger set associated to blocks, the approach described in [HJR11] is able to retrieve
precise information about blocks to classify them as persistent.

2.3.5 Other replacement policies

Since the proposal ofMay andMust analyses for LRU caches, other replacement policies have been
investigated. Approaches for FIFO [GR09, GYLY13], PLRU [GR10, GLBD14] and NMRU [GLYY14]
have been proposed. Another possibility is also to rely on the usual may and must analyses
to analyze a program under an LRU policy and to use the result to deduce the behavior of the
program under another policy. �is method, called relative competitiveness [Rei09], may be less
precise than an analysis specifically designed for a given policy but can be used for all the policies
previously mentioned.

As mentioned previously, this thesis focuses on the LRU replacement policy. Contrarily to the
may and must analyses, which provide over and under-approximations of block ages, we propose
exact analyses. However, we rely on the may and must analyses as an inexpensive precomputa-
tion, and use more precise analyses for blocks that are le� unclassified and require more precise
analyses.

2.3.6 Cache analysis by Model Checking

In addition to abstract interpretation approaches, one can find in literature cache analyses relying
on model checking, as [LGY+10]. �ese analyses consist in encoding both the program and the
cache in a timed automaton as follows:

• �e CFG of the program is encoded by defining a variable state describing the current basic
block being executed. One then defines the transition relation such that next(state) can take
the value of any successor of the basic block given by state.

• For each loop, one variable is added to count the number of iteration. �is variable is set
to 0 when entering the loop, and is incremented each time the backedge is taken. Finally, a
guard avoid the loop body to be reached once the loop bound is reached.

• A variable of array type is used to model the cache content. �e transition relation is mod-
ified to encode the replacement policy when an access is reached.

37

[optional] A variable wcet is initialized to 0. Each time a basic block is executed, its WCET
is added to this variable. In case the cache model predict a miss, a penalty is applied to the
wcet variable.

One can then check the satisfiability of the LTL formula G((state = exit) ⇒ (wcet < N))
for different values of N . �e wcet is then found by binary search on N . Some approaches,
like [CR11] estimate a WCET by encoding the program into an Integer Linear Problem, but use a
model checker to catch cache conflicts not found by usual abstract interpretation. �e main idea
of this approach is to extract the location of accesses from the binary to encode them into the
program source (at C level). �en a model checker (like CBMC in this case) is used to find the
cache conflict while taking the program semantics into account. �is fine-grained information is
then encoded into the ILP.

38

Chapter 3

Cache Analysis Complexity

Performing computation requires resources. Mainly, two resources are usually considered when
evaluating the cost of an algorithm: memory consumption, and execution time. By estimating
the space (i.e. memory) and time required to compute the solution to a given problem, one can
evaluate how hard the problem is. More precisely, the complexity of a given problem is defined
as the cost of the best algorithm solving this problem, in the worst-case.

To our knowledge, problems related to the analysis of caches have not been studied from the
complexity point of view. In this chapter, we thus look at the theoretical complexity of classifying
memory accesses as hits or misses for several replacement policies.

3.1 Background

Deterministic and Non-Deterministic Computation Model

Evaluating the time or space consumption of an algorithm requires to fix on the machine that exe-
cutes this algorithm. �e usual choice is to assume the algorithm is running on a Turing machine.
�e time consumption of an algorithm is then defined as the number of transitions taken by the
machine before reaching the problem solution, whereas the space consumption characterizes the
number of tape cells used during the execution. However, these time and space measurements
obviously depend on the input of the machine, i.e. the instance of the problem. �e complexity of
an algorithm thus expresses the relation between the time or space required to solve the problem
and the size of the input, i.e. the number of bits needed to encode the input. More precisely, the
complexity of an algorithm is the function that, given the size of the problem instance, gives the
cost of the algorithm execution. Because the exact cost is usually difficult to express, one uses an
asymptotic upper-bound of the worst-case cost when the input size tend to infinity (see [AB09,
Chap. 1] for more formal definitions).

Commonly, problems solvable by an algorithm which time complexity is bounded by a poly-
nomial when running on a deterministic Turing machine are considered tractable. In this chapter,
we focus on decision problems, i.e. problems that can be posed as a yes/no questions, such as
“Does the given graph contains a cycle?”. In particular, we note P the set of decision problem
that can be answered in polynomial time by a deterministic Turing machine. �ese problems are
considered as easy to solve, because increasing linearly the size of the instance only lead to a
polynomial increase in the number of computation steps to solve it. On the other hand, algorithm
which time complexity is exponential (or more) are considered intractable. Note that there exist
algorithms whose complexity is neither polynomial nor exponential.

Similarly to the P class of problems, one can define the NP class of decision problems that

39

can be solved in polynomial time on a nondeterministic Turing machine1. For a given state of the
machine and a given symbol read on the tape, a deterministic Turing machine always behaves
the same, i.e. only one next state is reachable. Contrarily, a non-deterministic Turing machine
might have several transitions available for a given symbol and a given state. When this happen,
the transition taken is then the one that “get closer” to the problem solution. In other word, one
can consider that a non-deterministic machine is “lucky”2 and always takes the best transition
available. Alternatively, one can consider that all transition are taken at the same time in parallel
(and that the tape is copied as many time as needed), and that all execution continue concurrently.
�eNP class can also be defined as the set of problemswhich solution can be verified in polynomial

time by a deterministic Turing machine.
A typical example of problem in NP is the SAT problem (boolean satisfiability problem) that

consists in finding a valuation of boolean variables that makes a propositional formula true. In-
deed, given a valuation of variables, checking the truth value of a formula is simply done by
a bo�om-up exploration of the formula syntax tree. A consequence of this definition is that
every problem in P is in NP, because deterministic Turing machines are a special case of non-
deterministic Turing machines. �e problem “Is P equal to NP?” is still an open question.

Using the notion of NP problems, one can define the class of NP-hard problems, that are “at
least as hard as any problem in NP”. More formally, a decision problem A is NP-hard if given a
polynomial time algorithm fA solving this problem, one can build for any problem B in NP a
polynomial procedure fB that solves B in polynomial time using fA. fA is called an oracle and
the process of turning fA in fB is called a reduction. A is then NP-hard if any problem B in NP
can be reduced to A in polynomial time.

Finally, NP-complete problems are problems that are both NP and NP-hard. �ey are thus
the “hardest” problems in NP, because they are at least as hard as any other NP problem. By
definition, finding a polynomial procedure that solves a NP-complete problem would imply that
any NP problem can be solved in polynomial time and would thus prove that P equals NP. SAT
is the prototypical example of a NP-complete problem (this is the result of Cook-Levin theorem).
Some variation have also been proven to be NP-complete. Noticeably, the problem 3-SAT is also
NP-complete. 3-SAT is similar to SAT, but boolean formula are required to be in conjunctive
normal form (i.e. a conjunction of disjunctive clauses), where each clause contains at most three
li�erals.

Space complexity

When considering spatial complexity, one can define classes similar to their time complexity coun-
terparts P, NP, NP-hard and NP-complete. PSPACE defines the set of decision problems that can
be solved by a deterministic machine that uses a polynomial number of tape cells in the worst
case. NPSPACE is similar but allows the use of an non-deterministic Turing machine to solve the
problem. According to Savitch’s theorem [Sav70], PSPACE = NPSPACE, i.e. a problem that can
be solved by using polynomial memory space on a non-deterministic can also be solved using
polynomial memory space on a deterministic machine. Moreover, doing so will only increases
the time needed by a polynomial factor. In the following, we thus use the term PSPACE to denote
the NPSPACE complexity class.

PSPACE-hard then denotes the set of problems that are “at least as hard” as any PSPACE
problem. More precisely, a decision procedure that solves a PSPACE-complete problem could be

1Note that such machines are theoretical computation model and do not exist yet in practice.
2�e term of “angelic machine” is sometimes used, in opposition to “demoniac machine” that takes the worst

possible transition.

40

used to build a solution to any PSPACE problem. Unsurprisingly, the PSPACE-complete class then
denotes the intersection of PSPACE and PSPACE-hard problem sets.

Note also that at most one tape cell is wri�en each time a transition is taken by the Turing
machine. �us, only a polynomial number of cells can be wri�en in polynomial time, and we have
NP ⊆ PSPACE. Similarly, PSPACE-hard ⊆ NP-hard.

Finally, the current knowledge about the mentioned complexity classes can be summarized
by Figure 3.1. We have P ⊆ NP ⊆ PSPACE = NPSPACE and, as a consequence, PSPACE-Hard ⊆
NP-Hard.

P

NP

PSPACE=NPSPACE

PSPACE-Hard

NP-Hard

NP-Complete PSPACE-Complete

Figure 3.1 – Relations between complexity classes

As an example of PSPACE-complete problem, we introduce the reachability problem for
boolean register machine:

Definition 1. A Boolean register machine is defined by a number r of registers and a directed

(multi-)graph with an initial vertex and a final vertex, with edges adorned by instructions of the

form:

Guard vi = b where 1 ≤ i ≤ r and b ∈ {f , t},

Assignment vi := b where 1 ≤ i ≤ r and b ∈ {f , t}.

�e register state is a vector of r Booleans. An edge with a guard vi = bmay be taken only if the i-th
register contains b; the register state is unchanged. �e register state a�er the execution of an edge

with an assignment vi := b is the same as the preceding internal state except that the i-th register

now contains b.
�e reachability problem for such a system is the existence of a valid execution starting in the

initial vertex with all registers equal to 0, and leading to the final vertex.

Lemma 2. �e reachability problem for Boolean register machines is PSPACE-complete.

Proof. Such a machine is easily simulated by a polynomial-space nondeterministic Turing ma-
chine; by Savitch’s theorem the reachability problem is thus in PSPACE.

Any Turing machine using space P (|x|) on input x can be simulated by a Boolean register
machine with O(P (|x|)) registers, encoding the tape of the Turing machine, and a number of
transitions polynomial in the description of the Turing machine.

�is last lemma is extensively used in the following section to prove the PSPACE-hardness of
some cache-related decision problems. Finally, the following lemma will also be used to study the
theoretical complexity of cache analysis problems when the program model does not have any
cycles.

41

initial final

v1 := f

v1 := t

v2 := f

v2 := t

v3 := f

v3 := t

v1 = t

v2 = t

v3 = t

v1 = f

v2 = t

v3 = f

Figure 3.2 – Reduction of CNF-SAT over 3 unknowns with clauses {v1 ∨ v2 ∨ v3, v̄1 ∨ v2 ∨ v̄3} to
a Boolean 3-register machine

Lemma 3. �e reachability problem for Boolean register machines with acyclic control-flow is NP-

complete.

Proof. A path from initial to final vertices, along with register values, may be guessed nondeter-
ministically, then checked in polynomial time, thus reachability is in NP.

Any CNF-SAT problem with r Boolean unknowns may be encoded as a Boolean r-register
machine as follows: a sequence of r disjunctions between vi := t and vi := f for each variable i,
and then for each clause vi+

1
∨ · · · ∨ vi+

n+
∨ vi−

1
∨ · · · ∨ vi−

n−

, a disjunction between edges vi+i = t

for all 1 ≤ i ≤ n+ and edges vi−i = f for all 1 ≤ i ≤ n− (see Figure 3.2).

3.2 Complexity of Replacement Policies

As in the remaining of this thesis, we consider that the control-flow graph (and thus the cache
conflict graph) carries only identifiers of memory blocks to be accessed, abstracting away the
data that are read or wri�en, as well as arithmetic operations and guards. �erefore, we take into
account executions that cannot take place on the real system. �is is the same se�ing used by
many static analyses for cache properties. Some more precise static analyses a�empt to discard
some infeasible executions — e.g. an execution with guards x < 0 and x > 0 with no intervening
write to x is infeasible. In general, however, this entails deciding the reachability of program
locations. �is problem is undecidable if the program operates over unbounded integers, and
already PSPACE-complete if the program operates on a finite vector of bits. Clearly we cannot
use such a se�ing to isolate the contribution of the cache analysis itself.

In this chapter, we explore the questions of cache analysis efficiency as decision problems.
As mentioned previsouly, cache analysis is interested in classifying accesses as Always-Hit and
Always-Miss. Informally, the Always-Hit problem can be stated as “Does any path in the given
graph lead to hit at the given access?”. �is can be reformulated in the equivalent Exist-Miss prob-
lem: “Is there any path in the given graph that lead to a miss at the given access?”. Similarly, this
section looks at the complexity of the Exist-Hit problem rather than the Always-Miss equivalent
version3.

Definition 4 (Exist-Hit Problem). �e exist-hit problem is, for a given replacement policy:

3�is formulation is chosen to avoid themanipulation of complementary problem that are in the co-NP complexity
class.

42

Inputs a cache conflict graph with nodes adorned with memory

block

a starting node S in the graph

a final location F in the graph

the cache associativity (number of ways k), in unary

a memory block a
Outputs a Boolean: is there an execution trace from S to F , starting

with an empty initial cache and ending with a cache contain-

ing a?

Definition 5 (Exist-Miss Problem). �e exist-miss problem is defined as above but with an ending

state not containing a.

Remark 6. In definitions 4 and 5, it does not ma�er if the associativity is specified in unary or

binary. An associativity larger than the number of blocks in the program always produces hits once

the block is loaded, thus the problems becomes trivial. �is also applies to FIFO, PLRU, NMRU caches

and, more generally, to any cache analysis problem starting from an empty cache with a replacement

policy that never evicts cache blocks as long as there is a free cache line.

We shall also study the variant of this problem where the initial cache contents are arbitrary:

Definition 7. �e exist-hit (respectively, exist-miss) problem with arbitrary initial state contents is

defined as above, except that the output is “are there a legal initial cache state q0 and an execution

trace from S to F , starting in cache state q0 and ending with a cache containing (respectively, not

containing) a?”.

We shall here prove that

• for policies LRU, FIFO, pseudo-RR, PLRU, and NMRU, the exist-hit and exist-miss problems
are NP-complete for acyclic cache conflict graphs (CCG);

• for LRU, these problems are still NP-complete for cyclic CCGs;

• for PLRU, FIFO, pseudo-RR, PLRU, and NMRU, these problems are PSPACE-complete for cyclic
CCGs;

• for LRU, FIFO, pseudo-RR, and PLRU, the above results extend to exist-miss and exist-hit
problems from an arbitrary starting cache state.

Under the usual conjecture that PSPACE-complete problems are not in NP, this may justify why
analyzing properties of FIFO, PLRU and NMRU caches is harder than for LRU.

Real-life CPU cache systems are generally complex (multiple levels of caches) and poorly doc-
umented (o�en, the only information about replacement policies is by reverse engineering). For
our complexity-theoretical analyses we need simple models with clear mathematical definitions;
thus we consider only one level of cache, and only one cache set per cache 4.

4A real cache system is composed of a large number of “cache sets” (see Section 2.1): a memory block may fit in
only one cache set depending on its address, and the replacement policy applies only within a given cache set. For all
commonly found cache replacement policies except pseudo-round-robin, and disregarding complex CPU pipelines,
this means that the cache sets operate completely independently, each seeing only memory blocks that map to it; each
can be analyzed independently. It is therefore very natural to consider the complexity of analysis over one single
cache set, as we do in this chapter.

43

3.2.1 Fixed associativity

In a given hardware cache, the associativity is fixed, typically k = 2, 4, 8, 12 or 16. It thus
makes sense to study cache analysis complexity for fixed associativity. However, such analysis can
always be done by explicit-state model-checking (enumeration of reachable states) in polynomial
time:

�eorem 8. Let us assume here that the associativity k is fixed, as well as the replacement policy

(among those cited in this article). �en exist-hit and exist-miss properties can be checked in polyno-

mial time, more precisely in O(|G|k+1) where |G| is the size of the CCG.

Proof. Let (V,E) be the CCG; its size is |G| = |V | + |E|. Let Blocks the set of possible cache
blocks. Without loss of generality, for all policies discussed in this article, the only blocks that
ma�er in Blocks are those that are initially in the cache (at most k) and those that are found on
the control edges. Let us call the set of those blocks Blocks ′; |Blocks ′′| ≤ |V |+ k.

�e state of the cache then consists in k blocks chosen among |Blocks ′| possible ones, plus
possibly some additional information that depends on the replacement policy (e.g. the indication
that a line is empty); say b bits per way. �e number of possible cache states is thus (2b|Blocks ′|)k.

Let us now consider the finite automaton whose states are pairs (A, q) where A is a node in
the CCG and q is the cache state, with the transition relation (A, q) → (A′, q′) meaning that the
processor moves in one step from access A with cache state q to control node A′ with cache state
q′. �e number of states of this automaton is |V |.(2b|B′|)k, which is bounded by |G|.(|G|+k)k.2bk,
that is, O(|G|k+1).

Exist-miss and exist-hit properties amount to checking that certain states are reachable in this
automaton. �is can be achieved by enumerating all reachable states of the automaton, which
can be done in linear time in the size of the automaton.

It is an open question whether it is possible to find algorithms that are provably substantially
be�er in the worst-case than this brute-force enumeration. Also, would it be possible to separate
replacement policies according to their growth with respect to associativity? It is however un-
likely that strong results of the kind “PLRU analysis needs at leastK.|G|k operations in the worst
case” will appear soon, because they imply P 6= NP or P 6= PSPACE.

�eorem 9. Consider a policy among PLRU, FIFO, pseudo-RR (with known or unknown initial state)

or NMRU with known initial state (respectively, LRU), and a problem among exist-miss and exist-hit.

Assume (H): for this policy, for any algorithm A that decides this problem on this policy, and any

associativity k, there existK(k) and e(k) such that for all g0 there exists g(k, g0) ≥ g0 such that the
worst-case complexity of A on graphs of size g is at leastK(k).g(k, g0)

e(k). Assume also e(k)→∞
as k →∞, then P is strictly included in PSPACE (respectively, NP).

Proof. Suppose (H ′): there exists a polynomial-time algorithm A solving the analysis problem
for arbitrary associativity, meaning that there exist a constant K ′ and an exponent e′ such that
A′ takes time at most K ′.(k + g)e

′

on a graph of size g for associativity k.
Let k be an associativity. From (H) there is a strictly ascending sequence gm such that the

worst-case complexity of A on graphs of size gm is at least K(k).g
e(k)
m . From (H ′), K(k).g

e(k)
m ≤

K ′.(k + gm)
e′ . When gm →∞ this is possible only if e(k) ≤ e′.

Since e(k)→∞ as k →∞, the above is absurd. �us there is no polynomial-time algorithm
A for solving the analysis problem for the given policy. We prove later in this paper that these
analysis problems are PSPACE-complete for PLRU, FIFO, NMRU, pseudo-RR, and NP-complete
for LRU; the result follows.

44

3.2.2 LRU

�e “Least Recently Used” (LRU) replacement policy is simple and intuitive: the memory block
least recently used is evicted when a cache miss occurs (see 2.1 for more details). More precisely,
the state of an LRU cache with associativity k is a word of length at most k over the alphabet of
cache blocks, composed of pairwise distinct le�ers; an empty cache is defined by the empty word.
When an access is made to a block a, if it belongs to the word (hit), then this le�er is removed
from the word and prepended to the word. If it does not belong to the word (miss), and the length
of the word is less than k, then a is prepended to the word; otherwise, the length of the word is
exactly k — the last le�er of the word is discarded and a is prepended.

Fundamental properties

Our LRU analyses, as well as all our results on LRU in this thesis, are based on the following easy,
but fundamental, property of LRU caches:

Proposition 10. A�er an execution path starting from an empty cache, a block a is in the cache if

and only if there has been at least one access to a along that path and the number of distinct blocks

accessed since the last access to a is at most k − 1.

Example 11. Assume a 4-way cache, initially empty. A�er the sequence of accesses bcabdcdb, block
a is in the cache because bdcdb contains only 3 distinct blocks b, c, d. In contrast, a�er the sequence

bcabdceb, block a is no longer in the cache because bdceb contains 4 distinct blocks b, c, d, e.

Exist-Hit

In the following, we show that the exit-hit problem is NP-complete (i.e. both in NP and NP-hard)
for the LRU policy. To prove that exist-hit is in NP-hard, we show that it is at least as hard as
any CNF-SAT problem. More precisely, given a CNF-SAT problem, we show how to encode it in
a exist-hit problem such that any cache analyzer that would solve the exist-hit problem could be
turned into a SAT-solver. �is encoding roughly consists in two parts: the first one is used to
assign a value to the problem variables, and the second one is used to check whether the chosen
values solve the given formula.

x

ba

bā

bb

bb̄

bc

bc̄

bc̄

bb

ba

bc̄

bb̄

bā

bc

bb

bā

Filling Cache
Variable Assignement

x potential evictions
Clause Encoding

Figure 3.3 – �ere is a path from init to end with at most 3 different accessed blocks if and only
if the formula (c̄ ∨ b ∨ a) ∧ (c̄ ∨ b̄ ∨ ā) ∧ (c ∨ b ∨ ā) has a model. �us, for a LRU cache with
associativity k = 4, there is an execution from start to end ending in a cache state containing x if
and only if this formula has a model.

45

�eorem 12. �e exist-hit problem is NP-complete for LRU and acyclic CCGs.

Proof. �e problem is in NP: a path may be chosen nondeterministically then checked in polyno-
mial time.

Now consider the following reduction from CNF-SAT (see Figure 3.3 for an example). Let nV

be the number of variables in the SAT problem. We set the cache associativity to k = nV + 1.
With each variable v in the SAT problem we associate two cache blocks bv and bv̄. �e CCG we
build starts with an access to fresh block x. �en, we happen two sequences of switches:

• For each variable v in the SAT problem, a switch between the two blocks associated to v
and v̄ respectively. On Figure 3.3, this sequence of switches is on the le�. When executing
this sequence, exactly nV blocks are loaded in the cache. More precisely, for each variable
v, either bv or bv̄ is loaded. �us, at the end of the sequence, the cache contains x, and one
block for each variable. �e cache is thus full, and the next block that will be evicted is x.

• For each clause in the SAT problem, a switch between accesses to the blocks associated to
the literals in the clause. On Figure 3.3, this sequence of switches is on the right. Consider
for instance the first switch between bc̄, bb and ba. Because of the first sequence of switches,
any cache miss leads to the eviction of the block x. If bc̄ has been loaded, then bc̄ can be
accessed again to reach the next switch without evicting x (which keeps the least-recently
used position). Otherwise, one can go through ba or bb (provided one of them has been
loaded before). If none of the three blocks have been loaded during the first sequence of
switches, x will be evicted.

Each path through the sequence of switches with at most nV different blocks corresponds to a
SAT valid assignment, and conversely.

Finaly, there exists an execution such that at end the cache contains x if and only if there exists
a SAT valid assignment.

�e objection can be made that the reduction in this proof produces cache conflict graphs in
which the same block occurs an arbitrary number of times — the number of times the correspond-
ing literal occurs in the CNF-SAT problem, plus one. �is may be appropriate for a data cache
(the same data may be accessed many times within a loop-free program) but is unrealistic for an
instruction cache5: a given cache block may not overlap with arbitrarily many basic blocks in the
machine code 6. However, we can refine the preceding result to account for this criticism.

�eorem 13. �e exist-hit problem is NP-complete for LRU for acyclic CCGs, even when the same

cache block is accessed no more than thrice.

Proof. We use the same reduction as in �eorem 12, but from a CNF-SAT problem where each
literal occurs at most twice, as per the following lemma.

Lemma 14. CNF-SAT is NP-hard even when restricted to sets of clauses where the same literal occurs

at most twice, the same variable exactly thrice. 7.

5Unless procedure calls are “inlined” in the graph.
6Consider a cache with 64-byte cache lines, as typical in x86 processors. In order for several basic blocks to overlap

with that cache line, each, except perhaps the last one, must end with a branch instruction, which, in the shortest
case, takes 2 bytes. No more than 32 basic blocks can overlap this cache line, and this upper bound is achieved by
highly unrealistic programs.

7We thank Pálvölgyi Dömötör for pointing out to us that this restriction is still NP-hard.

46

Proof. In the set of clauses, rename each occurrence of the same variable vi as a different variable
name vi,j , then add clauses vi,1 ⇒ vi,2, vi,2 ⇒ vi,3, . . . , vi,n−1 ⇒ vi,n, vi,n ⇒ vi,1 to establish
logical equivalence between all renamings. Each literal now occurs once or twice, each variable
thrice. Each model of the original formula corresponds to a model of the renamed formula, and
conversely.

Remark 15. �e exist-hit problem is easy when the same cache block occurs only once in the graph.

Assume that the aim is to test whether there exists an execution leading to a cache containing x at the
final location end. Either there exists one reachable access A to x in the CCG, or there is none (in the

la�er case, x cannot be in the cache at location end). �en there exists an execution leading to a cache

state containing x at location end if and only if there exists a path of length at most k − 1 between

A and end, which may be tested for instance by breadth-first traversal. �e complexity question

remains opens when cache blocks occur at most twice.

We proved that the exist-hit problem is NP-complete for acyclic CCGs. In the following, we
thus investigate the case of arbitrary CCGs. Because the acyclic case is a special case of graph,
the problem is still NP-hard (the same reduction can be used). However, by dropping the acyclic
constraint, the problem might not be in NP anymore. In particular, one can not guess nondeter-
ministically a path and check in polynomial time if it leads to a miss, because cycles can create
arbitrarily long paths. To show that the exist-hit problem remains in NP in case of cyclic CCG,
we thus prove that if there exists a path leading to hit, then there is at least one “short” path also
leading to hit, where “short” stands for “verifiable in polynomial time”. To show this, we reason
about the set of blocks loaded along a path. We thus introduce the following notation:

Definition 16. �e content of a path π, denoted by c(π), is the set of blocks accessed along this path.

�eorem 17. �e exist-hit problem is still in NP for LRU when the graph may be cyclic.

Proof. Consider a path π from start to end such that the cache contains a when end is reached.
Let πi the last access to a in π. We then note π1 and π2 the paths obtained by spli�ing π at πi. More
precisely, π1 = π0 . . . πi and π

2 = πi+1 . . . F . Because π leads to a hit at end, we have |c(π2)| < k.
By removing all cycles from π1 and π2, we obtain π1′ and π2′ of lengths at most |Access| (the
number of accesses in the CCG) and such that c(π2′) ⊆ c(π2). �en, the path π′ = π1′ .π2′ leads
to a hit and has length at most 2|Access|. �us, the nondeterministic search for a witness hit
path may be restricted to simple paths of length at most 2|Access|, which ensures membership in
NP.

Exist-Miss

�eorem 18. �e exist-miss problem is NP-complete for LRU for acyclic CCGs.

Proof. Obviously, the problem is in NP: a path may be chosen nondeterministically, then checked
in polynomial time.

We reduce the Hamiltonian circuit problem to the exist-miss problem (see Figure 3.4 for an
example). Let (V,E) be a graph, let n = |V |, v = {v0, . . . , vn−1} (the ordering is arbitrary). Let
us construct an acyclic CCG G suitable for cache analysis as follows:

• two accesses A0
0 and A

n
0 to a block b0 associated to the vertex v0.

• for each variable vi, i ≥ 1, |V | − 1 accesses Aj
i , 1 ≤ j < n, to the block bi associated to vi.

(this arranges these accesses in layers indexed by j)

47

v0

v1

v3

v2

(a) Graph with (thick) Hamiltonian

cycle

A0
0 A1

2

A1
1

A1
3

A2
1

A2
2

A2
3

A3
1

A3
2

A3
3

A4
0

(b) Acyclic CCG obtained by the reduction. Blocks accessed are

not shown; the path corresponding to the Hamiltonian cycle is

highlighted with thick lines.

Figure 3.4 – Reduction from �eorem 18 from the Hamiltonian cycle problem to the exist-miss
problem for LRU caches.

• for each pair Aj
i , A

j+1
i′ of accesses in consecutive layers, an edge if and only if there is an

edge (vi, v
′
i) in E.

�ere is a Hamiltonian circuit in (V,E) if and only if there is a path inG from A0
0 to A

n
0 such that

no block (except bv0) is accessed twice; thus if and only if there exists a path from A0
0 to A

n
0 with

at least n distinct accessed blocks. �en, there exists a trace such that b0 is not in the cache at An
0

if and only if this Hamiltonian circuit exists.

�e proof of �eorem 17 does not carry over to the exist-miss case. By removing cycles, we
ensure the existence of a path with at most as many distinct blocks accessed, which is desired to
show the existence of a hit. However, in the case of a miss we need to guarantee there are enough
distinct blocks to lead to a miss. If we remove cycles, we may remove blocks that are necessary to
lead a miss. We thus need a different proof to show that the exist-miss problem is still in NP for
cyclic CCGs.

Lemma 19. LetG be a CCG with at mostN = |Blocks| blocks, and let A1, A2 be two accesses inG.
From any path fromA1 toA2 we can extract a path fromA1 toA2 with the same contents and length

at most |Access|2.

Proof. Consider a path π from A1 to A2. π can be segmented into sub-paths π1, . . . , πm, each
beginning with the first occurrence of a new block not present in previous sub-paths.

Each sub-path πi consists of an initial access π0
i followed by π′

i. From π′
i one can extract a

simple path π′′
i — that is, π′′

i has no repeated accesses — of length at most |Access| − 1. �e con-
catenated path π0

1π
′′
1 · · · π

0
mπ

′′
m has the same contents as π, starts and ends with the same accesses,

and has at most |Access|2 accesses.
Figure 3.5 gives an example of short path extraction. �e first step is to find the first occurence

of all accesses in the path (in red) to split π accordingly. We thus obtain π1 = A1, π2 = A2A1,
π3 = A3A1A2A1A1 and π4 = A4A1A3A2A1. We then remove the cycles from the subpaths π′

i

obtained. �is gives us π′′
1 = ε, π′′

2 = π′′
3 = π′′

4 = A1. �e final short path obtained is thus
A1A2A1A3A1A4A1.

�eorem 20. �e exist-miss problem is still in NP for cyclic CCGs.

Proof. Follows from the preceding lemma: search for a witness path of length at most |Access|2

in the CCG.

48

π : A1 A2 A1 A3 A1 A2 A1 A1 A4 A1 A3 A2 A1

π0
1 π0

2 π0
3 π0

4

= = = =

π1 π2 π3 π4

cycle from π′
3

cycle from π′
3

cycle from π′
4

extracted path: A1 A2 A1 A3 A1 A4 A1

Figure 3.5 – Construction of a small path with identical content

Extensions

Remark 21. �e above theorems hold even if the starting cache state is unspecified, because what

ma�ers in their proofs is the contents of the path from the initial access to x to the final location, and
not the initial contents of the cache.

Remark 22. �e proofs of NP-hardness for exist-hit and exist-miss on acyclic graphs for LRU carry

over to FIFO.

3.2.3 FIFO

FIFO (First-In, First-Out), also known as “round-robin”, caches follow the samemechanism as LRU
(a bounded queue ordered by age in the cache), except that a block is not rejuvenated on a hit.

�ey are used in Motorola PowerPC 56x, Intel XScale, ARM9, ARM11 [Rei09, p.21], among
others.

Fundamental properties

�e state of a FIFO cache with associativity k is a word of length at most k over the alphabet of
cache blocks, composed of pairwise distinct le�ers; an empty cache is defined by the empty word.
When an access is made to a block a, if it belongs to the word (hit) then the cache state does not
change. If it does not belong to the word (miss), and the length of the word is less than k, then
a is prepended to the word; otherwise, the length of the word is exactly k — the last le�er of the
word is discarded and a is prepended.

Lemma 23. �e exist-hit and the exist-miss problems are in NP for acyclic control flow graphs.

Proof. Guess a path nondeterministically and execute the policy along it.

Lemma 24. �e exist-hit and the exist-miss problems are in PSPACE for general graphs.

Proof. Simulate the execution of the policy using a polynomial-space nondeterministic Turing
machine. Based on Savitch’s theorem, both problems are in PSPACE.

49

Reduction to Exist-Hit

�is section describes how we reduce the reachability problem for the Boolean register machine
to the exist-hit problem for the FIFO cache. �e main idea of this reduction is to represent the
boolean registers as a cache state, and the directed graph of the machine as a CCG. More precisely,
we provide a systematic method to encode guards and assignment as sequences of accesses.

v2 := t

v1 := t

v2 = t?

Ir

Fr

prologue

Ψ2,t

Ψ1,t

Φ2,t

epilogue

If

Ir

Fr

Ff

Reduction

Boolean Register Machine Cache Conflict Graph

Figure 3.6 – Example of reduction

�e main process is illustrated on Figure 3.6:

• A prologue initializes the cache to a state that reflects the initial boolean registers of the
machine.

• Each assignment vi := b is turned into an sequence of accessesΨi,b (referred as assignment
gadget in the following). �is sequence modifies the cache state to mimic the assignment.

• Each guard vi = b is turned into a gadget Φi,b that keep the cache unchanged if and only if
the guard is satisifed, and turn it into an “invalid” state otherwise.

• An epilogue is appended to filter out the “invalid” states. �e aim of the epilogue is to turn
the current cache state into a state that leads to a hit if and only if the current state is “valid”.

�emain difficulty in this reduction is that the Boolean registermachinesmay terminate traces
if a guard is not satisfied, whereas the cache problem has no guards and no way to terminate
traces. Our workaround is that cache states that do not correspond to traces from the Boolean
machine are irremediably marked as incorrect. Formally, we use an encoding into FIFO cache
states that allows us to distinguish between well-formed and not well-formed cache states. Guards
are then translated into access sequences that turn well-formed cache states into not well-formed

ones when not satisfied, and that keep the cache state unmodified otherwise. �e remaining of
this section describes the encoding of registers, prologue, epilogue, guards and assignments.

Encoding registers

�e associativity of the cache is chosen as k = 2r−1, where r is the size of the boolean register
of the machine. �e alphabet of cache blocks is {(ai,b)1≤i≤r,b∈{f ,t}}∪{(ei)1≤i≤r}∪{(fi)1≤i≤r−1}∪

50

{(gi)1≤i≤r−1}. �e internal state v1, . . . , vr of the register machine is to be encoded as the FIFO
word

ar,vrerar−1,vr−1
er−1 . . . a1,v1 . (3.1)

Note that e1 is not cached in this state.
Informally, a FIFO cache state containing the block ai,f encodes a boolean register where bi =

f , whereas a FIFO cache ai,t encodes a register where bi = t. �e idea is to simulate a delay-line
memory that stores the state of all the booleans bis. When a register bi reaches the end of the
delay line (the associated block ai,vi is evicted), it is refreshed (i.e. the associated blocks is access
again). �e gadgets used to encode the guards and assignments are designed such that exactly
one of the block ai,t and ai,f is stored in the cache at any time. In addition to the ai,b, the cache
state contains some ei blocks that are used to distinguish the well-formed cache states from the
not well-formed ones. Well-formed states only contains ordered paired (ai,b, ei) (except that one
of the ei is not cached), whereas not well-formed cache states contain pairs in the reverse order
(ei, ai,b). �e fi and gi blocks will be used later.

Encoding guards

For simplicity reasons, the sequence of accesses associated to guards and assignment are de-
composed into r subsequences. Each of these subsequence updates or checks one of the boolean
registers. To reason about these subsequenced, we introduce the notion of shi�:

Definition 25. We say that a FIFO word is well-formed at shi� 1, or well-formed for short if it is

of the form

ar,vrerar−1,vr−1
er−1 . . . a1,v1 (3.2)

We say that a FIFO word is well-formed at shi� i (2 ≤ i ≤ r) if it is of the form

ai−1,vi−1
. . . e2a1,v1e1ar,vr . . . ai+1,vi+1

ei+1ai,vi (3.3)

In both cases, we say that the FIFO word corresponds to the state v1, . . . , vr.

We now define the guard gadget, i.e. the automatic translation of a guard into sequence of
accesses that checks whether the current cache state represents registers satisfying the guard.

Definition 26. �e sequence Φi,b of accesses associated to a guard edge vi = b is:

start end

φ1,f

φ1,t

φi−1,f

φi−1,t

φi,b

φi+1,f

φi+1,t

φr,f

φr,t

where φj,b denotes the sequence of accesses aj,bejaj,b.

Informally, a subsequence φj,b checks whether the register vj is equal to b. If so, the registers
represented by the cache state is unchanged. Otherwise, the current cache is turned into a non
well-formed cache state. �is is illustrated on Figure 3.7. On Figure 3.7a, the entry cache state
represents the registers v1 = t, v2 = f , v3 = t, v4 = t, well-formed at shi� 2 so that φ2,f can
be used to check that v2 is false. We first check that v2 is false by accessing the associated block
a2,f . Because our cache state represents a set of registers where v2 is false, this access results in a
hit and the cache state is unchanged. �en, we shi� the cache state by accessing e2 (which evict
a2,f), and a2,f to place it at the beginning. On the other hand, when the guard is not fulfilled, we
end up in a situation where the cache is not well-formed anymore. �is situation is illustrated on

51

Figure 3.7b, where the entry cache state represents registers that are all true. �en the first access
to a2,f leads to a miss and the block is thus enqueued before e2. e2 is then accessed, placing it at
the beginning of the cache state. �e last access to a2,f results in a hit and does not change the
cache state. Finally, we end up in a situation where e2 and a2,f are swapped in comparison to the
final state obtained when the guard is satisfied.

a1,t e1 a4,t e4 a3,t e3 a2,f

a1,t e1 a4,t e4 a3,t e3 a2,f

e2 a1,t e1 a4,t e4 a3,t e3

a2,f e2 a1,t e1 a4,t e4 a3,t

a2,f

e2

a2,f

w = t, f , t, t

w = t, f , t, t

φ2,f

(a) Fulfilled guard

a1,t e1 a4,t e4 a3,t e3 a2,t

a2,f a1,t e1 a4,t e4 a3,t e3

e2 a2,f a1,t e1 a4,t e4 a3,t

e2 a2,f a1,t e1 a4,t e4 a3,t

a2,f

e2

a2,f

w = t, t, t, t

not well-formed w

φ2,f

(b) Not fulfilled guard

Figure 3.7 – Example of guard execution at shi� 2

When both φj,t and φj,f are in parallel in the guard gadget, both values of vj are allowed. �is
construction is simply used to shi� the cache state to the appropriate state. �en the subsequence
φi,b is used to ensure vi has value b as shown above, and the remaining of the gadget simply shi�s
the cache state to compensate the first sequence of shi�s.

One can notice that when the guard is not fulfilled, the final cache states obtained is not
arbitrary. Instead, the final cache states is similar to a well-formed state, where some contiguous
blocks have been swapped. �is is formalized by introducing well-phased states. In our proofs,
well-phased states are used to guarantee one can not go back from a non well-formed state to a
well-formed one.

Definition 27. We say that a FIFO word is well-phased at shi� 1, or well-phased for short if it is

of the form

βrαrβr−1 . . . α2β1 (3.4)

where, for each i:

• either αi = ei and βi = ai,bi for some bi,

• or βi = ei and αi = ai,bi for some bi.

We say that a FIFO word is well-phased at shi� i (2 ≤ i ≤ r) if it is of the form

βi−1αi−1 . . . β1α1βrαr . . . βi+1αi+1βi (3.5)

�e following lemmas then expresses the correctness of the subsequence φi,b.

Lemma 28. Assume w is well-formed at shi� i, corresponding to state σ = (σ1, . . . , σr). If σi =
b, then executing φi,b over FIFO state w leads to a state well-formed at shi� i + 1 (1 if i = r),
corresponding to σ too. If σi = ¬b, then executing φi,b over FIFO state w leads to a state well-phased,

but not well-formed, at shi� i+ 1 (1 if i = r).

Proof. Without loss of generality we prove this for i = 1 and b = f . Assume w =
ar,vrer . . . a2,v2e2a1,f ; then the sequence φ1,f = a1,fe1a1,f yields a1,fe1ar,vrer . . . a2,v2 . As-
sume now w = ar,vrer . . . a2,v2e2a1,t; then φ1,f yields e1a1,far,vrer . . . a2,v2 .

52

Lemma 29. Assume w is well-phased, but not well-formed, at shi� i, then executing φi,b over FIFO

state w leads to a state well-phased, but not well-formed, at shi� i+ 1.

Proof. Without loss of generality, we shall prove this for i = 1. Let w = βrαr . . . β2α2β1.
First case: β1 = e1. φ1,b = a1,be1a1,b then leads to e1a1,bβrαr . . . β2, which is well-phased, but

not well-formed due to the first two le�ers, at shi� 2.
Second case: β1 is either a1,f or a1,t; assume the former without loss of generality. �en there

exists j > 1 such that αj = aj,vj and βj = ej (because w is not well-formed).
φ1,f then leads to a1,fe1βrαr . . . β2α2, which is well-phased, but not well-formed due to the

βj, αj , at shi� 2.
φ1,t leads to e1a1,tβrαr . . . β2α2, which is well-phased, but not well-formed due to the first two

le�ers, at shi� 2.

Encoding assignments

Now that we can handle guards, we propose the following gadget to handle assignments:

Definition 30. Each assignment edge vi := b is replaced by the gadget Ψi,b:

start end

φ1,f

φ1,t

φi−1,f

φi−1,t

ψi,b

φi+1,f

φi+1,t

φr,f

φr,t

where ψi,b denotes the sequence of accesses eiai,bei.

�emain idea of this gadget is to shi� the cache state until the desired block ei is evicted. �en,
the cache state is modified to reflect the assignment. �is modification is illustrated on Figure 3.8.
�e case of a well-formed cache is shown on Figure 3.8a. In this example, the blocks e2 and a2,t
are inserted at the beginning of the cache (both result in cache misses). �e obtained cache state
is well-formed, and le� unmodified by the third access. Conversely, the case of a non well-formed
but well-phased cache is illustrated on Figure 3.8b. More precisely, we show the case where the
cache is ill-formed because of a guard implying the register v2.

a1,t e1 a4,t e4 a3,t e3 a2,f

e2 a1,t e1 a4,t e4 a3,t e3

a2,t e2 a1,t e1 a4,t e4 a3,t

a2,t e2 a1,t e1 a4,t e4 a3,t

e2

a2,t

e2

w = t, f , t, t

w = t, t, t, t

ψ2,t

(a) Assignement when the input state is well-formed

a1,t e1 a4,t e4 a3,t e3 e2

a1,t e1 a4,t e4 a3,t e3 e2

a2,t a1,t e1 a4,t e4 a3,t e3

e2 a2,f a1,t e1 a4,t e4 a3,t

e2

a2,t

e2

not well-formed w

not well-formed

ψ2,t

(b) Assignement when the input is not well-formed

Figure 3.8 – Example of assignment execution

We now prove the correctness of the assignment gadget.

Lemma 31. Assume w is well-formed at shi� i, corresponding to state σ = (σ1, . . . , σr). Executing
ψi,b over FIFO state w leads to a state well-formed at shi� i+1 (1 if i = r), corresponding to σ where

σi has been replaced by b.

53

Proof. Without loss of generality we prove it for i = 1 and b = f . Assume w =
ar,vrer . . . a2,v2e2a1,v1 ; then the sequence ψ1,f = e1a1,fe1 yields a1,fe1ar,vrer . . . a2,v2 .

Lemma 32. Assume w is well-phased, but not well-formed, at shi� i, then executing ψi,b or over

FIFO state w leads to a state well-phased, but not well-formed, at shi� i+ 1.

Proof. Without loss of generality, we shall prove this for i = 1. Let w = βrαr . . . β2α2β1.
First case: β1 = e1. ψ1,b = e1a1,be1 then leads to e1a1,bβrαr . . . β2α2, which is well-phased, but

not well-formed due to the first two le�ers, at shi� 2.
Second case: β1 is either a1,f or a1,t; assume the former without loss of generality. �en there

exists j > 1 such that αj = aj,vj and βj = ej . ψ1,b then leads to a1,be1βrαr . . . β2α2, which is
well-phased, but not well-formed due to the βj, αj , at shi� 2.

�e two following corollaries then express the overall correctness of the reduction over a all
path in the CCG.

Corollary 33. Assume starting in a well-formed FIFO state, corresponding to state σ, then any path
through the gadget encoding an assignment or a guard

• either leads to a well-formed FIFO state, corresponding to the state σ′ obtained by executing the

assignment, or σ′ = σ for a valid guard;

• or leads to a well-phased but not well-formed state.

Corollary 34. Assume starting in a well-phased but not well-formed FIFO state, then any path

through the gadget encoding an assignment or a guard leads to a well-phased but not well-formed

FIFO state.

Prologue

Using these assignment gadget, we can define a starting sequence in the CCG that initializes
the cache to a well-formed cache state representing the registers v1 = f , v2 = f , . . . , vr = f .

Definition 35. From the cache analysis initial vertex If to the register machine former initial vertex

Ir there is a prologue, a sequence of accesses a1,fe1 . . . ar−1,fer−1ar,f . �is first sequence of accesses

aims at initializing the FIFO cache to a state representing a register machine having all registers set

to false.

�e correctness of this initial sequence is a direct consequence of the freshness of blocks ai,vi
and ei.

So far, our reduction transforms a boolean register machine into a CCG such that any path
in the machine is associated to a path in the CCG. �is path either leads to valid cache state if
all guard are fulfilled along the path in the machine, or a well-phased but not well-formed state
otherwise.

Epilogue

Finally, to complete the reduction, we propose a final sequence that turns well-formed cache
states into a state where ar,f is cached and other well-phased caches into a cache not containing
ar,f . By doing so, there is a path leading to cache containing ar,f if and only if the final path of the
boolean register machine is reachable.

54

Definition 36. From the register machine former final vertex Fr, we append a sequence of accesses

ψ1,f . . . ψr,f constituting the first part of the epilogue. We note Fa the final vertex of this sequence.

From Fa, we add another sequence of accesses a1,fg1e2f2a2,fg2 . . . er−1fr−1ar−1,fgr−1erfr, constitut-
ing the second part of the epilogue. We note Fh the final vertex of this second sequence.

Lemma 37. �e path from Fr to Fa:

• transforms a well-phased but not well-formed FIFO state into a well-phased but not well-formed

FIFO state

• transforms any well-formed FIFO state into a well-formed FIFO state w0 corresponding to the

initial register state (all registers zero).

Proof. �is simply results from the correctness of the ψi,b sequences.

We now finish the reduction by showing that the second part of the epilogue leads a cache
containing ar,f if and only if the cache state reaching this sequence is well-formed.

Lemma 38. �e path a1,fg1e2f2a2,fg2 . . . er−1fr−1ar−1,fgr−1erfr (from Fa to Fh):

• transforms w0 into frgr−1fr−1 . . . g2f2g1ar,f

• transforms any other word w consisting of a’s and e’s into a word not containing ar,f .

Proof. �e first point directly results from the update of w0 according to the given sequence. a1,f
results in a hit and is evicted right a�er when accessing g1. �en e2 is accessed, leading again to
a hit, and is evicted when accessing f2. �is process continues until er is evicted, leaving ar,f in
the cache.

We shall now prove that it is necessary for the input word to be exactly w0 in order for the
final word to contain ar,f . In order for that, there must have been at most 2r− 2misses along the
path. �e accesses to g1, f2, g2, . . . , fr−1, gr−1, fr are always misses because they are fresh blocks.
As there are 2r−2 of them, there must have been exactly those misses and no others. �is implies
that ar,f was in the first position in w.

When er is processed, similarly there were exactly 2r − 3 misses, and er must be a hit. �is
implies that er was in the first or the second position inw, but since the first position was occupied
by ar,f , er must have been in the second position.

�e same reasoning holds for all preceding locations, down to the first one, and thus the lemma
holds.

From all these lemmas, the main result follows:

Corollary 39. �ere is an execution of the FIFO cache from If to Ff such that ar,f is in the final

cache state if and only if there is an execution of the Boolean register machine from Ir to Fr.

�eorem 40. �e exist-hit problem for FIFO caches is NP-complete for acyclic graphs and PSPACE-

complete for general graphs.

Proof. As seen above, a register machine reachability problem can be reduced in polynomial time
to a exist-hit FIFO problem, preserving acyclicity if applicable.

Remark 41. We have described a reduction from a r-register machine to a FIFO cache problem

with an odd 2r − 1 number of ways. �is reduction may be altered to yield an even number

of ways as follows. Two special padding le�ers p and p′ are added. A well-formed state is now

ar,vrer . . . a2,v2e2a1,v1p; �e definition of well-phased states is similarly modified. Each gadget G for

assignment or guard is replaced by p′GpG. �e first p′ turns padding p into p′, G is applied. �e

second p′ turns p′ into p and G is applied again.

�is remark also applies to the exist-miss problem studied below.

55

Reduction to Exist-Miss

We modify the reduction for exist-hit in order to exhibit a miss on ar,f later on if and only if it is
in the cache at the end of the graph defined above.

Definition 42. We transform the register machine graph into a cache analysis graph as in

exist-hit case, with the following modification: in between Fh and Ff we insert a sequence

erar−1,fer . . . a1,fe1ar,f , constituting the third part of the epilogue.

Lemma 43. �e path from Fh to Ff transforms frgr−1fr−1 . . . g2f2g1ar,f into a word not containing
ar,f . It transforms any word composed of f ’s and g’s only into a word containing ar,f .

�eorem 44. �e exist-miss problem for FIFO caches is NP-complete for acyclic graphs and PSPACE-

complete for general graphs.

Extension to arbitrary starting cache

Lemma 45. �e exist-hit and exist-miss problems for an empty starting FIFO cache state are reduced,

in linear time, to the same kind of problem for an arbitrary starting cache state, with the same

associativity.

Proof. Noting Blocks be the alphabet of blocks in the problem and k its associativity, Let
e1, . . . , e2k−1 be new blocks not in Blocks ; a�er accessing them in sequence, the cache contains
only elements from these accesses [RGBW07a, �. 1]. Prepend this sequence as a prologue to
the cache problem; then the rest of the execution of the cache problem will behave as though it
started from an empty cache.

Corollary 46. �e exist-hit and exist-miss problems for FIFO caches with arbitrary starting state is

NP-complete for acyclic graphs and PSPACE-complete for general graphs.

Extension to Pseudo-RR caches

Recall how a FIFO cache with multiple cache sets — the usual approach in hardware caches —
operates. A memory block of address x is stored in the cache set number H(x) where H is a
suitable function, normally a simple combination of the bits of x. In typical situations, this is as
though the address x were specified as a pair (s, a) where s is the number of the cache set and a
is the block name to be used by the FIFO in cache set number s.

In a FIFO cache, each cache set, being a FIFO, can be implemented as a circular buffer: an array
of cache blocks and a “next to be evicted” index. In contrast, in a pseudo-RR cache, the “next to
be evicted” index is global to all cache sets.

A FIFO cache exist-hit or exist-miss problem with cache block labels a1, . . . , an can be turned
into an equivalent pseudo-RR problem simply by using (s, a1), . . . , (s, an) as addresses for a con-
stant distinguished cache set s. �us, both exist-hit and exist-miss are NP-hard for acyclic control-
flow graphs on pseudo-RR caches, and PSPACE-hard for general control-flow graphs.

�e same simulation arguments used for FIFO (see Section 3.2.3) hold for establishing mem-
bership in NP and PSPACE respectively.

3.2.4 PLRU

Because LRU caches were considered too difficult to implement efficiently in hardware, various
schemes for heuristically approximating the behavior of a LRU cache (keeping the most recently

56

used data) have been proposed. By “heuristically approximating” we mean that these schemes are
assumed, on “typical” workloads, to perform close to LRU, even though worst-case performance
may be different.8 Some authors lump all such schemes as “pseudo-LRU” or “PLRU”, and call
the scheme in the present section “tree-based PLRU” or “PLRU-t” [AMM04], while some others
[Rei09, p. 26] call “PLRU” only the scheme discussed here.

PLRU caches

Here is a reminder about the behavior of PLRU caches, see Section 2.1 for more details. �e cache
lines of a PLRU cache, which may contain cached blocks, are arranged as the leaves of a full binary
tree — thus the number of ways k is a power of 2, o�en 4 or 8. Two lines may not contain the
same block. Each internal node of the tree has a tag bit, which is represented as an arrow pointing
to the le� or right branch. �e internal state of the cache is thus the content of the lines and the
k − 1 tag bits.

�ere is always a unique line such that there is a sequence of arrows from the root of the tree
to the line; this is the line pointed at by the tags. Tags are said to be adjusted away from a line as
follows: on the path from the root of the tree to the line, tag bits are adjusted so that the arrows
all point away from that path.

When a block a is accessed:

• If the block is already in the cache, tags are adjusted away from this line.

• If the block is not already in the cache and one or more cache lines are empty, the le�most
empty line is filled with a, and tags are adjusted away from this block.

• If the block is not already in the cache and no cache line is empty, the block pointed at by
the tags is evicted and replaced with a, and tags are adjusted away from this block.

In this section, we prove that the exist-hit and exist-miss problems are both PSPACE-complete

for the PLRU replacement policy.

Exist-Hit Problem

As for the FIFO policy, we prove the complexity of exist-hit by reducing the reachability problem
of a boolean register machine to this problem. More precisely, we reduce the reachability problem
of a Boolean r-register machine to the PLRU exist-hit problem for a (2r+2)-way cache — without
loss of generality, we can always add useless registers so that 2r+2 is a power of two. �e alphabet
of cache blocks we use in this reduction is {(ai,b)1≤i≤r,b∈{f ,t}} ∪ {(ei)0≤i≤r} ∪ {c}.

Encoding registers

Similarly to the FIFO case, we store blocks ai,b in the cache to represent a state of the boolean
register machine where vi = b. �e blocks ei are always in the cache and are used to adjust the

8Experimentally, on typical workloads, the tree-based PLRU scheme described in this section is said to produce
5% more misses on a level-1 data cache compared to LRU [AMM04]. However, that scheme may, under specific
concocted workloads, indefinitely keep data that are actually never used except once— a misperformance that cannot
occur with LRU [HLTW03a]. �is can produce domino effects: the cache behavior of a loop body may be indefinitely
affected by the cache contents before the loop [Ber06].
Because of the difficulties in obtaining justifiable bounds on the worst-case execution times of programs running

on a PLRU cache, some designers of safety-critical real-time systems lock all cache ways except for two, exploiting
the fact that a 2-way PLRU cache is the same as a 2-way LRU cache and thus recovering predictability [Ber06, §3].

57

x0 e0 x1 e1 x2 e2 x3 e3

1

1 0

1 1 1 0

1 0

1 0 0 1

1 0 1 0 1 0 0 1

x0 e0 x1 e1 x2 e2 x3 e3

1

0 0

1 0 1 0

1 0

0 1 0 1

1 0 0 1 1 0 0 1

x0 e0 x1 e1 x2 e2 x3 e3

1

1 0

0 0 1 0

1 0

1 0 0 1

0 1 0 1 1 0 0 1

x0 e0 x1 e1 x2 e2 x3 e3

0

1 1

0 0 1 0

0 1

1 0 1 0

0 1 0 1 1 0 0 1

e1

e0

e2

Figure 3.9 – Sequence π1 = e1e0e2 makes tags point at x1 without changing cache content

block pointed at by the tags. Finally, the block c is used as a witness of valid execution, i.e. a path
in the CCG maintains c in the cache as long as the guards are satisifed. By doing so, the final
cache state obtained contains c if and only if the final vertex of the boolean register machine is
reachable.

Definition 47. We say that a PLRU cache state is well-formed and corresponds to a Boolean state

(vi)1≤i≤r if its leaves are, from le� to right: c, e0, a1,v1 , e1, . . . , ar,vr , er.

Definition 48. We say that a PLRU cache state is well-phased if its leaves are, from le� to right:

x0, e0, a1,v1 , e1, . . . , ar,vr , er where x0 can be c or any ai,b. �e former case corresponds to a well-
formed cache state, whereas the la�er correspond to an invalid execution. In this case, there exists i
such that 1 ≤ i ≤ r and that both ai,t and ai,f are in the cache.

Encoding guards and assignement

To manipulate the blocks representing the value of registers, we need to manipulate the tags
to make the arrows points to the different ai,vi stored. Our reduction is based on the following
lemma, which states we can make the tags point at any cache line not containing an ei block.

Lemma 49. Let 0 ≤ i ≤ r, there exists a sequence πi of accesses, of length logarithmic in r, such
that, when run on a well-phased cache state x0, e0, x1 . . . , xr, er, that sequence makes tags point at

xi without changing the contents of the cache lines.

Proof. Consider the “tree path” from the cache line xi to the root tree. We want to set all tags on
this path such that the arrows point at xi. We do so level by level, starting from the cache line,
by accessing a block ei that is not in the same subtree than xi. Figure 3.9 shows an example of
sequence π1 that can be used to make the cache state point at x1. �e first step is to make the last
segment of the path from the tree root to x1 point to xi instead of e1. �is is done by accessing
e1. �en, we want the arrows to point toward the (x1, e1) subtree instead of the (x0, e0) subtree.
We thus access e0 to do so. Finally, we want the root tag to point to the le�, and we thus access
one of the ei blocks of the right subtree: e2 is a possible choice.

Let 1 ≤ i ≤ r, b ∈ {t, f}. �e guard gadget we use is Φi,b = π0ai,b, where π0 is any sequence
that makes the tags point at the cache line 0. �e intuition is that we make the tags points at

58

the cache line 0, which contains the block c, such that c is evicted if the access to ai,b results in a
miss. �e idea is that any missed guard irremediably removes c from the cache. In addition, we
use the assignment gadget Ψi,b = πiai,b. �is second gadget works by making the tags point at
the register value to modifiy, and accessing the block ai,b associated to the register new value.

�e following lemmas, stating the correctness of the gadgets, are easily proved by symbolically
simulating the execution of the gadgets over the cache states:

Lemma 50. Φi,b and Ψi,b map any well-phased but not well-formed state to a well-phased but not

well-formed state.

Lemma 51. Ψi,b maps a well-formed state to a well-formed state corresponding to the same Boolean

state where register i has been replaced by b.

Lemma 52. Φi,b maps a well-formed state corresponding to a Boolean state (vi)1≤i≤r to

• if vi = b, a well-formed state corresponding to the same Boolean state;

• otherwise, a well-phased but not well-formed state.

We can then build the complete CCG associated to the given boolean register machine as
follows:

Definition 53. • From the CCG initial vertex Ip to the register machine former initial vertex Ir
there is a sequence of accesses c, e0, a1,f , e1, . . . , ar,f , er.

• Each guard edge vi = b is replaced by the sequence Φi,b, and each assignment edge vi := b by
the sequence Ψi,b.

• �e cache final vertex Fp is the same as the register machine final vertex Fr.

Finally, the correctness of the whole reduction is trivially deduced from the preceding lemmas.

Corollary 54. �ere is an execution of the PLRU cache from Ip to Fp such that c is in the final cache
state if and only if there is an execution of the Boolean register machine from Ir to Fr.

Proof. One simply applies the correctness lemmas associated to the assignment and guard gadgets.
�e final cache state is well-formed if and only if the execution path in the CFG corresponds to a
valid execution of the Boolean register machine. A well-phased state is well-formed if and only if
it contains c.

�eorem 55. �e exist-hit problem for PLRU caches is NP-complete for acyclic graphs and PSPACE-

complete for general graphs.

Exist-Miss Problem

Similarly to the FIFO replacement policy, we build a reduction for the exist-miss problem from
the reduction of the exist-hit problem. We use an extra blocks d to turn well-formed states into
well-phased but not well-formed ones, and conversely.

Definition 56. Let Z be the sequence πrcπ0d.

Lemma 57. Z turns any well-formed state into a state not containing c. Z turns any well-phased

but not well-formed state into a state containing c.

59

Proof. Consider a well-formed state ce0a1,v1e1 . . . ar,vrer. πr only changes the tags value; then the
access to c does not change the line contents since c is in the cache, and c is replaced by d.

Consider a well-phased but not well-formed state x0e0a1,v1e1 . . . ar,vrer where x0 6= c. Z
replaces ar,vr by c; then x0 is replaced by d.

�e CCG used in the reduction is then identical to the exist-hit case, except that Z is appended
as epilogue to turn hits to c into misses and conversely.

Lemma 58. �ere is an execution of the PLRU cache from Ip to Fp such that c is not in the final

cache state if and only if there is an execution of the Boolean register machine from Ir to Fr.

�eorem59. �e exist-miss problem for PLRU caches is NP-complete for acyclic graphs and PSPACE-

complete for general graphs.

Extension to an arbitrary starting cache

Lemma60. �e exist-hit and exist-miss problems for an empty starting PLRU cache state are reduced,

in linear time, to the same kind of problem for an arbitrary starting cache state, with the same

associativity.

Proof. Same proof as 45, except we need a sequence of k
2
log2 k+1 new blocks [RGBW07a,�. 12].

Corollary 61. �e exist-hit and exist-miss problems for FIFO caches with arbitrary starting state is

NP-complete for acyclic graphs and PSPACE-complete for general graphs.

3.2.5 NMRU

Other forms of “pseudo-LRU” schemes have been proposed than the one discussed in Section 3.2.4.
One of them, due to [MPH94] is based on the use of “most recently used” bits. It is thus sometimes
referred to as the “not most recently used” (NMRU) policy, or “PLRU-m” [AMM04]. Confusingly,
some literature [Rei09] also refers to this policy as “MRU” despite the fact that in this policy, it
is not the most recently used data block that is evicted first. In this thesis we refer to this policy
based on “most recently used” bits as NMRU.

NMRU caches

�is section is a reminder about the NMRU replacement policy (see Section 2.1 for details).

Definition 62. �e internal state of an k-way NMRU cache is a sequence of at most kmemory blocks

αi, each tagged by a 0/1 “MRU-bit” ri saying whether the associated block is to be considered not

recently used (0) or recently used (1), denoted by αr1
1 . . . αrk

k .

An access to a block in the cache, a hit, results in the associated MRU-bit being set to 1. If there
were already k − 1 MRU-bits equal to 1, then all the other MRU-bits are set to 0.

An access to a block b not in the cache, a miss, results in:

• if the cache is not full (number of blocks less than k), then b1 is appended to the sequence

• if the cache is full (number of blocks equal to k), then the le�most (least index i) block with

associated MRU-bit 0 is replaced by b1. If there were already k − 1 MRU-bits equal to 1, then
all the other MRU-bits are set to 0.

60

e0

0

e1

0

e2

0

d

0

a1,t

0

a2,f

0

a3,t

0

g0

0

g1

1

Figure 3.10 – Encoding the word w = (t, f , t) as NMRU cache state

Remark 63. �is definition is correct because the following invariant is maintained: either the cache

is not full, or it is full but at least one MRU-bit is zero.

Example 64. Assume k = 4. If the cache contains a0b0c0, then an access to d yields a0b0c0d1 since
the cache was not full. If a is then accessed, the state becomes a1b0c0d1. If e is then accessed, the state
becomes a1e1c0d1 since b was the le�most block with a zero MRU-bit. If f is then accessed, then the

state becomes a0e0f 1d0.

Reduction to Exist-Hit

As for the FIFO and PLRU replacement policies, we reduce the reachability problem for boolean-
register machines to the exist-hit problem for the NMRU cache. Similarly, we do so by providing
an encoding of boolean registers as cache states, and gadgets for guards and assignments.

Encoding boolean registers

�e associativity of the cache is chosen as k = 2r + 3. �e alphabet of the cache blocks is
{(ai,b)1≤i≤r,b∈{f ,t}} ∪ {(ei)1≤i≤r} ∪ {(ci)1≤i≤r} ∪ {d} ∪ {g0, g1}.

As for the previous replacement policies, the ai,b blocks are used to encode the value of reg-
isters, and the ei blocks are used (together with d) to distinguish valid states from invalid ones.
�e ci blocks will be used in the epilogue, whereas g0 and g1 are used to keep control over the
global-flips.

�e internal state w = v1, . . . , vr of the register machine is to be encoded as the NMRU state

e01 . . . e
0
rd

0a01,v1 . . . a
0
r,vr
g00g

1
1 (3.6)

where the exponent (0 or 1) is the MRU-bit associated with the block.
For instance, a boolean register machine with 3 registers containing the values t, f , t is en-

coded by the NMRU cache state represented on Figure 3.10.
All valid states have the same form, with ei blocks on the le� of d and ai,b blocks on the right.

Conversely, if one of the ai,b is on the le� of d, the cache state is invalid. More formally, we define
well-formed and well-phased cache states as follows.

Definition 65. We say that an NMRU state is well-formed at step s ∈ {0, 1} if it is of the form

β0
1 . . . β

0
rd

0α0
1 . . . α

0
rg

s
0g

1−s
1 (3.7)

where ∀i, 1 ≤ i ≤ r, αi ∈ {aσ(i),f , aσ(i),t}, βi = eσ′(i) and σ and σ′ are two permutations of [1, r]. In
other words, a well-formed state contains r distinct blocks ei placed before d, and r blocks ai,b, with
distinct i’s, placed between d and g0. We say “well-formed” for short if s = 0.

Definition 66. We say that an NMRU state is well-phased at step s ∈ {0, 1} if it is of the form

γ0σ(1) . . . γ
0
σ(r)d

0γ0σ(r+1) . . . γ
0
σ(2r)g

s
0g

1−s
1 (3.8)

where γ1 = e1, . . . , γr = er, γr+1 ∈ {a1,f , a1,t}, . . . , γ2r ∈ {ar,f , ar,t} and σ is a permutation of

[1, 2r]. In other words, a “well-phrased” state is “well-formed” state without the constraint that blocks

ei and ai,vi must be respectively on the le� and right of d. We say “well-phased” for short if s = 0.

61

Encoding guards To verify that a cache state represents a boolean-register machine that sat-
isfies a given guard, we propose the following encoding of guards.

Definition 67. Each guard edge vi = b is replaced by the gadget Φi,b = φi,bg0φi,bg1, where φi,b is

start
d

a1,f

a1,t

ai−1,f

ai−1,t

ai,b
ai+1,f

ai+1,t

ar,f

ar,t
end

e1 er

Consider the sequence φi,bg0 and a well-formed state. A�er the first access to d, a sequence of
blocks aj,b are accessed. If one of them results in a miss, one of the ej on the le� of d is evicted,
leading to a state which is not well-formed. �e sequence of ej then replaces the aj,vj that were
not accessed. Conversely, if all the aj,b result in hits, the sequence of ej accesses also lead to hits
and the order of blocks in the cache state is le� unchanged. Figure 3.11 shows an example of (half-
)guard execution on a cache state representing the registers v1 = t, v2 = f . On the le� example
(Figure 3.11a), the guard (v2 = f) is satisfied. As a result, the final cache state is well-formed at step
1 and represent the same cache state. To obtain the same state well-formed at shi� 0, one simply
execute again the same sequence by replaceing g0 by g1. Hence the definition Φ2,f = φ2,fg0φ2,tg1.
On the right (Figure 3.11a), the guard executed is v2 = t and is thus not satisfied. As a result,
the final cache state is well-phased, but not well-formed. Repeating the same sequence with g1
instead of g0 does not change the form of the cache state.

e1

0

e2

0

d

0

a1,t

0

a2,f

0

g0

0

g1

1

e1

0

e2

0

d

1

a1,t

0

a2,f

0

g0

0

g1

1

e1

0

e2

0

d

1

a1,t

1

a2,f

0

g0

0

g1

1

e1

0

e2

0

d

1

a1,t

1

a2,f

1

g0

0

g1

1

e1

1

e2

0

d

1

a1,t

1

a2,f

1

g0

0

g1

1

e1

1

e2

1

d

1

a1,t

1

a2,f

1

g0

0

g1

1

e1

0

e2

0

d

0

a1,t

0

a2,f

0

g0

1

g1

0

d

a1,t

a2,f

e1

e2

g0

w = t, f

w = t, f

φ2,fg0

(a) Fulfilled guard

e1

0

e2

0

d

0

a1,t

0

a2,f

0

g0

0

g1

1

e1

0

e2

0

d

1

a1,t

0

a2,f

0

g0

0

g1

1

e1

0

e2

0

d

1

a1,t

1

a2,f

0

g0

0

g1

1

a2,t

1

e2

0

d

1

a1,t

1

a2,f

0

g0

0

g1

1

a2,t

1

e1

1

d

1

a1,t

1

a2,f

0

g0

0

g1

1

a2,t

1

e1

1

d

1

a1,t

1

e2

1

g0

0

g1

1

a2,t

0

e1

0

d

0

a1,t

0

e2

0

g0

1

g1

0

d

a1,t

a2,t

e1

e2

g0

w = t, f

not well-formed

φ2,tg0

(b) Not fulfilled guard

Figure 3.11 – Example of guard execution at step 0

�e following lemma expresses the correctness of the guard gadget more formally.

Lemma 68. Executing a path through φi,bgs over an NMRU state w well-phased at step s always
leads to a state well-phased at step 1− s. Furthermore that state

• either is not well-formed at step 1− s

• or is identical to w except for the g0 and g1 blocks, and this may occur only if ai,b belongs to w.

62

Proof. �e input state w is x01, . . . , x
0
r, d

0, x0r+1, . . . , x
0
2r, g

0
0, g

1
1 where the (xi)1≤i≤2r are a permu-

tation of {ei | 1 ≤ i ≤ r} ∪ {ai,βi
| 1 ≤ i ≤ r} for some sequence of Booleans (βi)1≤i≤r.

Consider a path through φi,b: it consists of d, followed by a sequence of r a’s, then r e’s. Each
of these accesses either freshens, or overwrites, one of the x positions. A�er the sequence of a’s,
there are either no a’s to the le� of d, or at least one. �e former case is possible only if all a’s
are hits, freshening positions to the right of d — this means all these positions are le� untouched
except that their MRU bits are flipped to 1. �en the sequence of e’s just flips to 1 the MRU-bits of
the e’s, all located to the le� of d. �e resulting state is thus identical tow except that all MRU-bits
to the le� of g0 have been flipped to 1; thus a�er accessing g0, the state is identical to the initial
state except that it ends with g1−s

0 gs1 instead of gs0g
1−s
1 .

Now consider the la�er case: a�er the sequence of a’s there is at least one position of the form
a1j,β to the le� of d. �is position cannot be overwri�en by the e’s. A�er the path through φi,b,
the state is thus of the form x11, . . . , x

1
r, d

1, x1r+1, . . . , x
1
2r, g

0
0, g

1
1 , and one of the xj for 1 ≤ j ≤ r

is an a. �e access to g0 yields x
0
1, . . . , x

0
r, d

0, x0r+1, . . . , x
0
2r, g

1−s
0 , gs1. �is state is well-phased but

not well-formed.

Encoding assignments �e gadget used to encode assignments is similar to the guard gadget.
�e idea is to access all the ei blocks and ai,vi blocks except the one we want to force the value to
b. By doing so, all the blocks on the le� of g0 except ai,vi have a MRU-bit set to 1. By accessing
ai,b, we thus modify the value of vi.

Definition 69. More precisely, the assignment gadget associated to vi := b is Ψi,b = ψi,bg0ψi,bg1,
where ψi,b is

start
d

a1,f

a1,t

ai−1,f

ai−1,t

ai+1,f

ai+1,t

ar,f

ar,t
end

e1 er ai,b

Figure 3.12 shows an example of such assignment gadget. On a well-formed input cache state
(see Figure 3.12a), the sequence of aj,vj and ej blocks only result in hits, leaving ai,vi as the next
block to evict. �e final cache state is thus still well-formed and represents the new value of
registers. Conversely, in case of a well-phased but not well-formed cache state (see Figure 3.12b),
the gadget can not result in a well-formed cache state.

Lemma 70. Executing a path through ψi,bgs over an NMRU state well-phased at step s always leads
to a state well-phased at step 1− s. Furthermore that state

• either is not well-formed at step 1− s

• or is identical to the initial state except for the g0 and g1 blocks, and, possibly, the ai,βi
block

replaced by ai,b.

Proof. Again, the initial state is x01, . . . , x
0
r, d

0, x0r+1, . . . , x
0
2r, g

0
0, g

1
1 where the (xi)1≤i≤2r are a per-

mutation of {ei | 1 ≤ i ≤ r} ∪ {ai,βi
| 1 ≤ i ≤ r} for some sequence of Booleans (βi)1≤i≤r.

Consider a path through ψi,b: it consists of d, followed by a sequence of r − 1 a’s, then r e’s,
then ai,b. Each of these accesses either freshens, either overwrites, one of the x positions. A�er
the sequence of a’s, there are either no a’s to the le� of d, or at least one. �e former case is
possible only if all these a’s are hits, freshening positions to the right of d. �en the sequence of
e’s freshens the e’s to the le� of d. �ere is one remaining x position with a zero MRU-bit: it is to
the right of d and carries a block ai,βi

. �is block is then updated or freshened by the ai,b access.

63

e1

0

e2

0

d

0

a1,t

0

a2,f

0

g0

0

g1

1

e1

0

e2

0

d

1

a1,t

0

a2,f

0

g0

0

g1

1

e1

0

e2

0

d

1

a1,t

1

a2,f

0

g0

0

g1

1

e1

1

e2

0

d

1

a1,t

1

a2,f

0

g0

0

g1

1

e1

1

e2

1

d

1

a1,t

1

a2,f

0

g0

0

g1

1

e1

1

e2

1

d

1

a1,t

1

a2,t

1

g0

0

g1

1

e1

0

e2

0

d

0

a1,t

0

a2,f

0

g0

1

g1

0

d

a1,t

e1

e2

a2,t

g0

w = t, f

w = t, t

ψ2,tg0

(a) Assignement when the input state is well-formed

a2,f

0

e1

0

d

0

a1,t

0

e2

0

g0

0

g1

1

a2,f

0

e1

0

d

1

a1,t

0

e2

0

g0

0

g1

1

a2,f

0

e1

0

d

1

a1,t

1

e2

0

g0

0

g1

1

a2,f

0

e1

1

d

1

a1,t

1

e2

0

g0

0

g1

1

a2,f

0

e1

1

d

1

a1,t

1

e2

1

g0

0

g1

1

a2,t

1

e1

1

d

1

a1,t

1

e2

1

g0

0

g1

1

a2,t

0

e1

0

d

0

a1,t

0

e2

0

g0

1

g1

0

d

a1,t

e1

e2

a2,t

g0

not well-formed

not well-formed

ψ2,tg0

(b) Assignement when the input is not well-formed

Figure 3.12 – Example of assignment execution

�en the access to g0 flips all MRU-bits to 0 except the one for g0, which is flipped to 1. Since all
of the accesses before the ai,b access were hits, the permutation of the positions has not changed:
the state is the same as the initial state except that a0i,βi

is replaced by a0i,b and g
s
0g

1−s
1 is replaced

by g1−s
0 gs1.
Now consider the la�er case: a�er the sequence of a’s there is at least one position of the form

a1j,β to the le� of d. �en, as in the proof of the previous lemma, there is still a0j,β to the le� of d at
the end of the path through ψi,bgs. �us the final state cannot be well-formed.

Corollary 71. Assume starting in a well-formed NMRU state, corresponding to Boolean state σ, then
any path through the gadget encoding an assignment or a guard

• either leads to a well-formed NMRU state, corresponding to the state σ′ obtained by executing

the assignment, or σ′ = σ for a valid guard;

• or leads to a well-phased but not well-formed state.

Prologue

As for the PLRU and FIFO replacement policies, we define a prologue that turns the empty
cache state to a cache state representing the set of boolean registers with value false.

Definition 72. From the cache analysis initial vertex In to the register machine former initial vertex

Ir there is the prologue: the sequence of accesses e1 . . . erda1,f . . . ar,fg0g1

�is sequence simply accesses the blocks we want to load in the cache, in the order we want
to load them. A�er accessing g1, all MRU-bit as reset, leading to cache state well-formed at step
0.

64

Epilogue

Finally, we propose to perform the final check on the block d. We thus need to turn well-formed
cache states into cache states that contain d (i.e. we should not evict it), and well-phased but not
well-formed cache states into states that do not contain d (i.e. it should be evicted).

Definition 73. From the register machine former final vertex Fr to a vertex Fa there is a sequence

of gadgets for the assignments v1 := 0 . . . vr := 0, the first part of the epilogue. From Fa to a vertex

Fh there is a sequence of accesses a1,f . . . ar,fc1 . . . cr, the second part of the epilogue. �e final vertex

is Fn = Fh.

Lemma 74. Executing the sequence a1,f . . . ar,fc1 . . . cr from Fa to Fh over a well-formed NMRU

state corresponding to a zero Boolean state leads to a state containing d — more specifically, a state

of the form c11, . . . , c
1
r, d

0, a1π(1),f , . . . , a
1
π(r),fg

0
0g

1
1 where π is a permutation.

Proof. �e a1,f . . . ar,f just freshen the corresponding blocks (MRU-bit set to 1), and then the
c1 . . . cr overwrite the e’s.

Lemma 75. Executing the sequence a1,f . . . ar,fc1 . . . cr from Fa to Fh over a well-phased but not

well-formed NMRU state leads to a state not containing d — where the 2r first MRU bits are set to 1,
the next one to 0, and then g00g

1
1 .

Proof. �e well-phased but not well-formed NMRU state contains at least one a to the right of d.
When applying a1,f . . . ar,f , at least one of the a’s must thus freshen or replace a le�er to the le�
of d. �en when applying c1 . . . cr, d gets evicted.

Corollary 76. �ere is an execution sequence from In, with empty cache, to Fn, such that the final

cache contains d if and only if there is an execution trace from Ir to Fr.

�eorem 77. �e exist-hit problem for NMRU caches is NP-complete for acyclic graphs and PSPACE-

complete for general graphs.

Reduction to Exist-Miss

Definition 78. We modify the reduction of the exist-hit case as follows. Between Fh and Fn we

insert the sequence dg0c1 . . . cra1,t, as the third part of the epilogue.

Lemma 79. Executing dg0c1 . . . cra1,t over a state of the form c11, . . . , c
1
r, d

0, a1π(1),f , . . . , a
1
π(r),fg

0
0g

1
1 ,

where π is a permutation, leads to a state without d.

Proof. d gets freshened, then g0 is the sole block with a zero MRU-bit. �us, when it is freshened,
all other MRU bits are set to zero. �en c1 . . . cr freshen the first r blocks, and a1,t erases d.

Lemma 80. Executing dg0c1 . . . cra1,t over a state not containing d, where the 2r first MRU bits are

set to 1, the next one to 0, and then g00g
1
1 leads to a state containing d.

Proof. d overwrites the 2r + 1-th position, then g0 is the sole block with a zero MRU-bit. �us,
when it is freshened, all other MRU bits are set to zero. �en possibly some blocks get overwri�en
among the r + 1 first blocks, and d is still in the cache.

Corollary 81. �ere is an execution sequence from In, with empty cache, to Fn, such that the final

cache does not contain d if and only if there is an execution of the Boolean register machine from Ir
to Fr.

65

�eorem 82. �e exist-miss problem for NMRU caches is NP-complete for acyclic graphs and

PSPACE-complete for general graphs.

Note that contrary to the FIFO and PLRU cases, the prologue we use heavily relies on the
assumption of a cache initially empty. �us, we have no results for reductions to cache analysis
problems with arbitrary starting state. �e proof method that we used for FIFO and PLRU —
prepend a sufficiently long sequence of accesses that will bring the cache to a sufficiently known
state — does not seem to easily carry over to NMRU caches. Even though it is known that 2k −
2 pairwise distinct accesses are sufficient to remove all previous content from an NMRU cache
[RGBW07a, �. 4], it can be shown that there is no sequence guaranteed to yield a completely
known cache state [RGBW07a, �. 5].

66

Chapter 4

Exact Cache Analysis

An ideal cache analysis would statically classify every memory access at every machine-code
instruction in a program into one of three cases: i) the access is a cache hit in all possible executions
of the program ii) the access is a cache miss in all possible executions of the program iii) in some
executions the access is a hit and in others it is a miss. However, no cache analysis can perfectly
classify all accesses into these three categories.

One first reason is that perfect cache analysis would involve testing the reachability of individ-
ual program statements, which is undecidable.1 A simplifying assumption o�en used, including in
this thesis, is that all program paths are feasible—this is safe, since it overapproximates possible
program behaviors. Even with this assumption, analysis is usually performed using sound but
incomplete abstractions (see Chapter 2.3) that can safely determine that some accesses always hit
(“∀Hit” in Figure 4.1) or always miss (“∀Miss” in Fig. 4.1). �e corresponding analyses are called
may and must analysis and referred to as “classical AI” in Fig. 4.1. Due to incompleteness the
status of other accesses however remains “unknown” (Fig. 4.1).

In this chapter, we propose an approach to eliminate this uncertainty in the case of LRU caches.
Our first contribution (colored red in Figure 4.1), is a novel abstract interpretation, calledDefinitely
Unknown analysis, that safely concludes that certain accesses are hits in some executions (“∃Hit”),
misses in some executions (“∃Miss”), or hits in some and misses in other executions (“∃Hit ∧
∃Miss” in Fig. 4.1). Using this analysis and prior must- and may- cache analyses, most accesses
are precisely classified.

Our second contribution consists in two approaches able to refine the remaining accesses
(accesses that are not classified due to a lack of precision of the previous analyses). �e first ap-
proach consists in encoding the classification problem in a model checker and takes advantage of
the small number of unclassified accesses to analyze them one by one. �is allows us to use two
method called block focusing, that abstract the cache behavior relatively to the analyzed cache
block. �e second approach also uses the block focusing abstraction, but perform additional sim-
plifications and relies on Zero-Suppressed Decision Diagrams for an efficient implementation of
these simplifications. Similarly to the model checking approach, this second approach (formalized
as an abstract interpretation analysis) provides an exact classification (colored green in Figure 4.1)
of the memory accesses.

Our analysis steps are summarized in Figure 4.2. Based on the control-flow graph and on
an initial cache configuration, the abstract-interpretation phase classifies some of the accesses
as “always hit”, “always miss” and “definitely unknown”. �ose accesses are already precisely
classified and thus do not require a refinement step. �e AI phase thus reduces the number of

1One may object that given that we consider machine-level aspects, memory is bounded and thus properties are
decidable. �e time and space complexity is however prohibitive.

67

unknown

∃Miss∃Hit

∀Miss∃Hit ∧ ∃Miss∀Hit

Classical AI

Definitely Unknown Anal-
ysis

Legend:

Result a�er refinement

Figure 4.1 – Possible classifications of classical abstract-interpretation-based cache analysis, our
new abstract interpretation, and a�er refinement by model checking.

accesses to be refined. In addition, the results of the AI phase are used to simplify the refinement
step. For instance, if the refinement step is performed using a model-checker, a simplified CCG
can be used, as discussed in detail in Section 4.2.

Abstract Interpretation

may/must analysis
∃hit/∃miss analysis

Control-
flow
graph

Cache con-
figuration

Simplified
program
model

Focused
cache model

Refinement
step

Figure 4.2 – Overall analysis flow.

4.1 Approximating the set of Definitely Unknown Accesses

Together, may andmust analysis can classify accesses as “always hit”, “alwaysmiss” or “unknown”
(see 2.3). An access classified as “unknown” may still be “always hit” or “always miss” but not
detected as such due to the imprecision of the abstract analysis; otherwise it is “definitely un-
known”. �is section proposes an abstract analysis that safely establishes that some blocks are
“definitely unknown” under LRU replacement.

4.1.1 Reminder: Caches and Static Cache Analysis

�is chapter focuses on the analysis of LRU instruction caches. As mentioned in Chapter 2.1, the
state of an LRU cache can be modeled by a mapping that assigns to each memory block its age,
where ages are truncated at k, i.e., we do not distinguish ages of uncached blocks. Similarly, all
paths in that graph are considered feasible, even if, taking into account the instruction semantics,
they are not—e.g. a path including the tests x ≤ 4 and x ≥ 5 in immediate succession is considered
feasible even though the two tests are mutually exclusive. All our claims of completeness are
relative to this model.

68

�e effect of an access to memory block b ∈ Blocks under LRU replacement is then formalized
as follows2:

update : DLRU × Blocks → DLRU

(q, b) 7→ q′

where ∀b′ ∈ Blocks , q′(b′) =

0 if b′ = b

q(b′) if b 6= b′ ∧ q(b′) > q(b)

q(b′) + 1 if b 6= b′ ∧ q(b′) ≤ q(b) ∧ q(b′) < k

k otherwise

As usual, we abstract the program under analysis by its cache conflict graph.

Collecting Semantics

In order to classify memory accesses as “always hit” or “always miss”, cache analysis needs to
characterize for each control location in a program all cache states that may reach that location
in any execution of the program. �is is commonly called the collecting semantics.

Given a control-flow graph G = (V,E, v0), the collecting semantics is defined as the least
solution to the following set of equations, where F : V → DLRU denotes the set of reachable
concrete cache configurations at each program location, and F0(v) denotes the set of possible
initial cache configurations:

∀v′ ∈ V : F (v′) = F0(v
′) ∪

⋃

(v,v′)∈E

update(F (v), blocks(b)), (4.1)

where blocks gives the sequence of memory blocks forming a basic block and update has been
li�ed pointwise from DLRU to P(DLRU) and from single memory block to sequence of blocks.

Explicitly computing the collecting semantics is practically infeasible. For a tractable analysis,
it is necessary to operate in an abstract domain whose elements compactly represent large sets of
concrete cache states.

Classical Abstract Interpretation of LRU Caches

To this end, the classical abstract interpretation of LRU caches [AFMW96] assigns to every mem-
ory block at every program location an interval of ages enclosing the possible ages of the block
during any program execution. �ese two analyses are detailed in Section 2.3. �e following is
only a reminder about the notation used. �e analysis for upper bounds, or must analysis, can
prove that a block must be in the cache; conversely, the one for lower bounds, or may analysis,
can prove that a block may not be in the cache. For instance, on Figure 4.3, the Must analysis
ensures that the last access to f always results in a hit and the May analysis guarantees that the
first access to each block is always a miss.

�e domains for abstract cache states under may and must analysis are DMay = DMust =
DLRU = Blocks → {0, ..., k}, where ages greater than or equal to the cache’s associativity k are
truncated at k as in the concrete domain. �e set of concrete cache states represented by abstract
cache states is given by the concretization function:

γMay(q̂May) = {q ∈ DLRU , ∀b ∈ Blocks : q̂May(b) ≤ q(b)}

γMust(q̂Must) = {q ∈ DLRU , ∀b ∈ Blocks : q(b) ≤ q̂Must(b)}

2Assuming for simplicity that all cache blocks map to the same cache set.

69

f
c
f
b
d

e
d

c

b

a

[f, c, b, d]
[c, f, b, d]
[f, b, d,⊥]
[b, d,⊥,⊥]
[d,⊥,⊥,⊥]
[⊥,⊥,⊥, b]

[b, a,⊥,⊥]/[e, d, c, b]
[b, a,⊥,⊥]/[d, c, b, a]
[b, a,⊥,⊥]/[c, b, a,⊥]

[b, a,⊥,⊥]
[a,⊥,⊥,⊥]
[⊥,⊥,⊥,⊥]

[f, c, b, d]
[c, f, b, d]

[f, b, d, {a, c, e}]
[b, d, {a, c, e},⊥]

[d, {b, e}, {a, c},⊥]
[{b, e}, {a, d}, c,⊥]

[b, a,⊥,⊥]/[e, d, c, b]
[b, a,⊥,⊥]/[d, c, b, a]
[b, a,⊥,⊥]/[c, b, a,⊥]

[b, a,⊥,⊥]
[a,⊥,⊥,⊥]
[⊥,⊥,⊥,⊥]

May Analysis Must Analysis

Figure 4.3 – Example of May and Must analyses

Abstract cache states can be joined by taking their pointwise extrema:

q̂Must ,1 ⊔Must q̂Must ,2 = q̂Must3, where ∀b ∈ Blocks , q̂Must3(b) = max{q̂Must ,1(b), q̂Must ,2(b)}

q̂May,1 ⊔May q̂May,2 = q̂May3, where ∀b ∈ Blocks , q̂May3(b) = min{q̂May,1(b), q̂May,2(b)}

Suitably defined abstract semantics F#
Must and F

#
May can be shown to overapproximate their

concrete counterpart:

�eorem 83 (Analysis Soundness [AFMW96]). �e may and the must abstract semantics are safe

approximations of the collecting semantics:

∀v ∈ V, F (v) ⊆ γMust(F
#
must(v)) ∧ F (v) ⊆ γMay(F

#
May(v)). (4.2)

�e may and must abstract transformers are in fact the best abstract transformers defined by
the abstraction/concretization pairs [Rei09].

4.1.2 Abstract Interpretation for Definitely Unknown

An access is “definitely unknown” if there is a concrete execution in which the access misses and
another in which it hits. �e aim of our analysis is to prove the existence of such executions to
classify an access as “definitely unknown”. Note the difference with classical may/must analysis
and most other abstract interpretations, which compute properties that hold for all executions,
while here we seek to prove that there exist two executions with suitable properties.

An access to a block a results in a hit if a has been accessed recently, i.e., a’s age is low. �uswe
would like to determine the minimal age that a may have in a reachable cache state immediately
prior to this access. �e access can be a hit if and only if this minimal age is lower than the cache’s
associativity. Because we cannot efficiently compute exact minimal ages, we devise an Exists Hit

(EH) analysis to compute safe upper bounds on minimal ages. Similarly, to be sure there is an
execution in which accessing a results in a miss, we compute a safe lower bound on the maximal
age of a using the Exists Miss (EM) analysis.

70

…

…

v

w

Cache is initially empty: Must : v 7→ k, w 7→ k
May : v 7→ k, w 7→ k

EH : v 7→ k, w 7→ k
EM : v 7→ k, w 7→ k

Must : v 7→ k, w 7→ k
May : v 7→ 1, w 7→ 0

EH : v 7→ 1, w 7→ 0
EM : v 7→ k, w 7→ k

Must : v 7→ 0, w 7→ k
May : v 7→ 0, w 7→ 1

EH : v 7→ 0, w 7→ 1
EM : v 7→ 0, w 7→ k

Must : v 7→ 1, w 7→ 0
May : v 7→ 1, w 7→ 0

EH : v 7→ 1, w 7→ 0
EM : v 7→ 1, w 7→ 0

Figure 4.4 – Example of two accesses in a loop that are definitely unknown. May/Must and EH/EM
analysis results are given next to the respective control locations.

Example. Let us now consider a small example. In Figure 4.4, we see a small control-flow graph
corresponding to a loop that repeatedly accesses memory blocks v and w. Assume the cache is
empty before entering the loop. �en, the accesses to v and w are definitely unknown in fully-
associative caches of associativity 2 or greater: they both miss in the first loop iteration, while
they hit in all subsequent iterations. Applying standard may and must analysis, both accesses are
soundly classified as “unknown”. On the other hand, applying the EH analysis, we can determine
that there are cases where v and w hit. Similarly, the EM analysis derives that there exist execu-
tions in which they miss. Combining those two results, the two accesses can safely be classified
as definitely unknown. Note that this example could be solved by unrolling the first iteration of
the loop. Indeed, accesses in the first iteration always results in a miss, whereas further iterations
always lead to hits. �is method is however not applicable if the definitely unknown access is not
in a loop and is not always successful (see Section 4.1.4).

We will now define these Exist-Hit and Exist-Miss analyses and their underlying domains more
formally. �e EH analysis maintains upper bounds on the minimal ages of blocks. Consider for
instance the Exist-Hit abstract cache [a, b, c, d]. �is abstract cache gives the information that a
has age 0 for at least one path, i.e. there is at least one path on which a is the least recently used
block. Similarly, there is at least one path to the current location where b has an age less than or
equal to 1. �is path might be the same than the one where a has age 0, but it might be a different
one. Now consider an access to block a. �e new value associated to a will be 0, because it still
has age 0 on at least one path (in fact, it now has age 0 for any paths). �e main question is what
should the new upper-bound associated to b be? We know that b has an age less than or equal to 1
on at least one path. On this path, accessing a can increase the age of b of at most 1. It is thus safe
to consider that there is now at least one path where b has an age less than or equal to 2. In other
words, while a has age 0 in some state and b has age 1 in some state, these are not necessarily the
same state. �us, accessing a forces us to consider that b might now have age 2.

In order to give more precise information about b, i.e. to claim that b has age less than or equal
to 1 on at least one path, one should guarantee that accessing a did not increase the age of b on
the path we consider. More precisely, one should ensure that a was already accessed a�er b on
the same path, and this information is in general not given by the exist hit abstract state (the
information it gives about a can concern another path). One should thus look at the must abstract
cache state. If the must analysis ensures that a has age at most 0, then one would know that awas
accessed more recently than b on the path where it has age 1, and accessing a again would not

71

increase the age of b. �us, our EH analysis includes a must analysis to obtain upper bounds on
all possible ages of blocks, which are required for precise updates. �en, the domain for abstract
cache states under the EH analysis is DEH = (Blocks → {0, . . . , k}) × DMust . Similarly, the
EM analysis maintains lower bounds on the maximal ages of blocks and includes a regular may
analysis: DEM = (Blocks → {0, . . . , k})×DMay .

�e properties we wish to establish, i.e. bounds on minimal and maximal ages, are actually
hyperproperties [CS08]: they are not properties of individual reachable states but rather of the
entire set of reachable states. Indeed, the EH analysis is used to make claims of the form “for the
given block a, there exists (at least) one reachable state among the set of reachable states where a
has age greater than i” (for some arbitrary i). �us, the conventional approach in which abstract
states concretize to sets of concrete states that are a superset of the actual set of reachable states is
not applicable. Instead, we express the meaning, γEH , of abstract states by sets of sets of concrete
states. A set of states Q is represented by an abstract EH state (q̂EH , q̂Must), if for each block b,
q̂EH (b) is an upper bound on b’s minimal age in Q, minq∈Q q(b):

γEH : DEH → P(DLRU)

(q̂EH , q̂Must) 7→
{
Q ⊆ γMust(q̂Must), ∀b ∈ Blocks : min

q∈Q
q(b) ≤ q̂EH (b)

}

Conversely, the Exist-Miss uses the following concretization function:

γEM : DEM → P(DLRU)

(q̂EM , q̂May) 7→
{
Q ⊆ γMay(q̂May), ∀b ∈ Blocks : q̂EM (b) ≤ max

q∈Q
q(b)

}

�e actual set of reachable states is an element rather than a subset of this concretization. �e
concretizations for the may and must analyses, γMay and γMust , are simply li�ed to this se�ing.
Also note that—possibly contrary to initial intuition—our abstraction cannot be expressed as an
underapproximation, as different blocks’minimal agesmay be a�ained in different concrete states.

�e abstract transformer updateEH ((q̂EH , q̂Must), b) corresponding to an access to block b is
the pair (q̂′EH , updateMust(q̂Must , b)), where

∀b′ ∈ Blocks , q̂′EH (b
′) =

0 if b′ = b

q̂EH (b
′) if q̂Must(b) ≤ q̂EH (b

′)

q̂EH (b
′) + 1 if q̂Must(b) > q̂EH (b

′) ∧ q̂EH (b
′) < k

k if q̂Must(b) > q̂EH (b
′) ∧ q̂EH (b

′) = k

Let us explain the four cases in the transformer above. A�er an access to b, b’s age is 0 in all
possible executions. �us, 0 is also a safe upper bound on its minimal age (case 1). �e access
to b may only increase the ages of younger blocks (because of the LRU replacement policy). In
the cache state in which b′ a�ains its minimal age, it is either younger or older than b. If it
is younger, then the access to b may increase b′’s actual minimal age, but not beyond q̂Must(b),
which is a bound on b’s age in every cache state, and in particular in the one where b′ a�ains its
minimal age. Otherwise, if b′ is older, its minimal age remains the same and so may its bound.
�is explains why the bound on b′’s minimal age does not increase in case 2. Otherwise, for safe
upper bounds, in cases 3 and 4, the bound needs to be increased by one, unless it has already
reached k. For instance, the abstract state ([⊥, b, a,⊥]Must , [{b, c}, a,⊥,⊥]EH) would be updated
to ([b,⊥, a,⊥]Must , [b, c, a,⊥]EH) on an access to b.

72

similarly, the abstract transformer updateEM ((q̂EM , q̂May), b) corresponding to an access to
block b is the pair (q̂′EM , updateMay(q̂May , b)), where

∀b′ ∈ Blocks , q̂′EM (b′) =

0 if b′ = b

q̂EM (b′) if q̂May(b) < q̂EM (b′)

q̂EM (b′) + 1 if q̂May(b) ≥ q̂EM (b′) ∧ q̂EM (b′) < k

k if q̂May(b) ≥ q̂EM (b′) ∧ q̂EM (b′) = k

�e followings theorem express the consistency of our abstract transformers:

Lemma 84 (EH Local Consistency). �e abstract transformer updateEH soundly approximates its

concrete counterpart update :

∀(q̂EH , q̂Must) ∈ DEH , ∀b ∈ Blocks , ∀Q ∈ γEH (q̂EH , q̂Must) :

update(Q, b) ∈ γEH (updateEH ((q̂EH , q̂Must), b)). (4.3)

Lemma 85 (EM Local Consistency). �e abstract transformer updateEM soundly approximates its

concrete counterpart update :

∀(q̂EM , q̂May) ∈ DEM , ∀b ∈ Blocks , ∀Q ∈ γEM (q̂EM , q̂May) :

update(Q, b) ∈ γEM (updateEM ((q̂EM , q̂May), b)). (4.4)

Concerning the merging of EH (respectively EM) states at control-flow joins, the standard
must (respectively may) join can be applied for the must (respectively may) analysis component.
In the concrete, the union of the states reachable along all incoming control paths is reachable a�er
the join. It is thus safe to take the minimum (respectively maximum) of the upper (respectively
lower) bounds on minimal (respectively maximal) ages for the EH (respectively EM) part:

(q̂EH ,1, q̂Must ,1) ⊔EH (q̂EH ,2, q̂Must ,2) = (q̂EH3, q̂Must ,1 ⊔Must q̂Must ,2)

where ∀b ∈ Blocks , q̂EH3(b) = min(q̂EH ,1(b), q̂EH ,2(b))

(q̂EM ,1, q̂May,1) ⊔EM (q̂EM ,2, q̂May,2) = (q̂EM3, q̂May,1 ⊔May q̂May,2)

where ∀b ∈ Blocks , q̂EM3(b) = max(q̂EM ,1(b), q̂EM ,2(b))

One can then formulate the correctness of the join operators as follows:

Lemma 86 (EH Join Consistency). �e join operator ⊔EH is correct:

∀((q̂EH ,1, q̂Must ,1), (q̂EH ,2, q̂Must ,2)) ∈ D
2
EH , ∀Q1 ∈ γEH (q̂EH ,1, q̂Must ,1), ∀Q2 ∈ γEH (q̂EH ,2, q̂Must ,2) :

Q1 ∪Q2 ∈ γEH ((q̂EH ,1, q̂Must ,1) ⊔EH (q̂EH ,2, q̂Must ,2)). (4.5)

Lemma 87 (EM Join Consistency). �e join operator ⊔EM is correct:

∀((q̂EM ,1, q̂May,1), (q̂EM ,2, q̂May,2)) ∈ D
2
EM , ∀Q1 ∈ γEM (q̂EM ,1, q̂May,1), Q2 ∈ γEM (q̂EM ,2, q̂May,2) :

Q1 ∪Q2 ∈ γEM ((q̂EM ,1, q̂May,1) ⊔EM (q̂EM ,2, q̂May,2)). (4.6)

73

Given a control-flow graph G = (V,E, v0), the abstract EH semantics is defined as the least
solution to the following set of equations, where F#

EH : V → DEH denotes the abstract cache
configuration associated with each program location, and F#

EH0(v) ∈ γEH (FEH0(v)) denotes the
initial abstract cache configuration:

∀v′ ∈ V : F#
EH (v

′) = F#
EH0(v

′) ⊔EH
⊔

(v,v′)∈E

updateEH (F
#
EH (v), blocks(v)). (4.7)

�e exist miss counterpart of the exist hit abstract semantics is defined by the same fixpoint
equation, where all EH are replaced by EM.

It follows from Lemmas 84 and 86 that the abstract EH semantics includes the actual set of
reachable concrete states:

�eorem 88 (Analysis Soundness). �e collecting semantics is a member of both the EH and EM

abstract semantics:

∀v ∈ V : F (v) ∈ γEH (F
#
EH (v)) ∩ γEM (F#

EM (v))

We can use the results of the EH analysis to determine that an access results in a hit in at least
some of all possible executions. �is is the case if the minimum age of the block prior to the access
is guaranteed to be less than the cache’s associativity. Similarly, the EM analysis can be used to
determine that an access results in a miss in at least some of the possible executions.

Combining the results of the two analyses, some accesses can be classified as Definitely Un-

known. �en, further refinement is provably impossible under the hypothesis that all paths are
feasible. Classifications as Exist-Hit or Exist-Miss, which occur if either the EH or the EM analysis
is successful but not both, are also useful to reduce further refinement efforts. Indeed, in case
of Exist-Hit one knows for sure that the access can not be refined as Always-Miss. It suffices to
determine by any method that a miss is possible to fully classify the access.

4.1.3 Definitely Unknown Proofs

Asmentioned earlier, the soundness of the EH analysis comes from the consistency of the abstract
transformers with respect to the concrete transformers. Here are the detailed proofs for the EH
analysis.

Lemma 84 (EH Local Consistency). �e abstract transformer updateEH soundly approximates its

concrete counterpart update :

∀(q̂EH , q̂Must) ∈ DEH , ∀b ∈ Blocks , ∀Q ∈ γEH (q̂EH , q̂Must) :

update(Q, b) ∈ γEH (updateEH ((q̂EH , q̂Must), b)). (4.3)

Proof. Consistency of EH Analysis
Let (q̂EH ,0, q̂Must ,0) ∈ DEH and b ∈ Blocks . We use the following additional notations:

• (q̂EH ,1, q̂Must ,1) = updateEH ((q̂EH ,0, q̂Must ,0), b)

• Q1 = γEH (q̂EH ,1, q̂Must ,1)

• Q0 = γEH (q̂EH ,0, q̂Must ,0)

• Q2 = {update(Q, b), Q ∈ Q0}

74

(q̂EH ,0, q̂Must ,0) (q̂EH ,1, q̂Must ,1)

Q0 Q2 Q1

updateEH

update

γEH γEH

⊆

Figure 4.5 – Notations used

�ese notations are summarized on Figure 4.5. Wewant to prove the inclusionQ2 ⊆ Q1, as shown

in red on the figure. To prove that this inclusion holds, we prove that any Q̃2 in Q2 belongs to

Q1. Let Q̃2 ∈ Q2 and Q̃0 ∈ Q0 such that Q̃2 = update(Q̃0, b). We first prove that Q̃2 is covered
by the must concretization of q̂Must ,0. First, we have:

∀q̃0 ∈ Q̃0, update(q̃0, b) ∈ {update(q, b), q ∈ γMust(q̂Must ,0)}

�us, by the consistency of the must analysis, we have:

∀q̃0 ∈ Q̃0, update(q̃0, b) ⊆ γMust({updateMust(q̂Must ,0, b)}) = γMust(q̂Must ,1)

�en: Q̃2 ⊆ γMust(q̂Must ,1). To complete the proof that Q2 ⊆ Q1, it remains to prove that:

∀b′ ∈ Blocks , ∃q ∈ Q̃2, such that: q(b′) ≤ q̂EH ,1(b
′)

Let b′ ∈ Blocks . We have:

q̂EH ,1(b
′) =

0 if b = b′

q̂EH ,0(b
′) if q̂Must ,0(b) ≤ q̂EH ,0(b

′)

q̂EH ,0(b
′) + 1 if q̂Must ,0(b) > q̂EH ,0(b

′) ∧ q̂EH ,0(b
′) < k

k if q̂Must ,0(b) > q̂EH ,0(b
′) ∧ q̂EH ,0(b

′) = k

Let q̃0 ∈ Q̃0 such that q̃0(b
′) ≤ q̂EH ,0(b

′). Let q̃2 = update(q̃0, b) ∈ Q̃2. We show that q̃2 is a
good candidate, i.e. q̃2(b

′) ≤ q̂EH ,1(b
′).

q̃2(b
′) =

0 if b = b′

q̃0(b
′) if q̃0(b

′) ≥ q̃0(b)

q̃0(b
′) + 1 if q̃0(b

′) < q̃0(b) ∧ q̃0(b
′) < k

k if q̃0(b
′) < q̃0(b) ∧ q̃0(b

′) = k

We then proceed by case disjunction:

• If b = b′: q̃2(b
′) = 0 = q̂EH ,1(b

′).

• If b 6= b′ ∧ q̂Must ,0(b) ≤ q̂EH ,0(b
′), then q̂EH ,1(b

′) = q̂EH ,0(b
′).

– If q̃0(b
′) ≥ q̂Must ,0(b), then: q̃0(b

′) ≥ q̃0(b).

�us: q̃2(b
′) = q̃0(b

′).

Finally: q̂EH ,1(b
′) = q̂EH ,0(b

′) ≥ q̃0(b
′) = q̃2(b

′)

75

– Otherwise, q̃0(b
′) < q̂Must ,0(b) and thus: q̃0(b

′) < q̂EH ,0(b
′).

∗ if q̃0(b
′) ≥ q̃0(b), then:

q̃2(b
′) = q̃0(b

′) < q̂0(b
′) ≤ q̂EH ,1(b

′)

∗ if q̃0(b
′) < q̃0(b), then:

q̃0(b
′) < k and thus: q̃2(b

′) = q̃0(b
′) + 1 ≤ q̂EH ,0(b

′) ≤ q̂EH ,1(b
′)

• If b 6= b′ ∧ q̂Must ,0(b) > q̂EH ,0(b
′) ∧ q̂EH ,0(b

′) < k, then q̂EH ,1(b
′) = q̂EH ,0(b

′) + 1. Moreover,
q̃0(b

′) ≤ q̂EH ,0(b
′) < k.

�us: q̃2(b
′) ≤ q̃0(b

′) + 1 ≤ q̂EH ,0(b
′) + 1 = q̂EH ,1(b

′)

• Otherwise, b 6= b′ ∧ q̂Must ,0(b) > q̂EH ,0(b
′)∧ q̂EH ,0(b

′) = k. �en: q̂EH ,1(b
′) = l and trivially:

q̃2(b
′) ≤ q̂EH ,1(b

′)

In all cases, we have: q̃2(b
′) ≤ q̂EH ,1(b

′). �us, Q̃2 ∈ Q1, proving that Q2 ⊆ Q1

�e proof of the consistency of the EM update transformer is the dual of the proof the EH
consistency.

Lemma 85 (EM Local Consistency). �e abstract transformer updateEM soundly approximates its

concrete counterpart update :

∀(q̂EM , q̂May) ∈ DEM , ∀b ∈ Blocks , ∀Q ∈ γEM (q̂EM , q̂May) :

update(Q, b) ∈ γEM (updateEM ((q̂EM , q̂May), b)). (4.4)

Proof. Consistency of EM Analysis
Let (q̂EM ,0, q̂May,0) ∈ DEM and b ∈ Blocks . We use the additional notations:

• (q̂EM ,1, q̂May,1) = updateEM ((q̂EM ,0, q̂May,0), b)

• Q1 = γEM (q̂EM ,1, q̂May,1)

• Q0 = γEM (q̂EM ,0, q̂May,0)

• Q2 = {update(Q, b), Q ∈ Q0}

�ese notations are summarized on Figure 4.6. Wewant to prove the inclusionQ2 ⊆ Q1, as shown

(q̂EM ,0, q̂May,0) (q̂EM ,1, q̂May,1)

Q0 Q2 Q1

updateEM

update

γEM γEM

⊆

Figure 4.6 – Notations used

in red on the figure. To prove that this inclusion holds, we prove that any Q̃2 in Q2 belongs to

Q1. Let Q̃2 ∈ Q2 and Q̃0 ∈ Q0 such that Q̃2 = update(Q̃0, b). We first prove that Q̃2 is covered
by the must concretization of q̂Must ,0. First, we have:

∀q̃0 ∈ Q̃0, update(q̃0, b) ∈ {update(q, b), q ∈ γMay(q̂May,0)}

76

�us, by the consistency of the may analysis, we have:

∀q̃0 ∈ Q̃0, update(q̃0, b) ⊆ γMay({updateMay(q̂May,0, b)}) = γMay(q̂May,1)

�en: Q̃2 ⊆ γMay(q̂May,1).
To complete the proof that Q2 ⊆ Q1, it remains to prove that:

∀b′ ∈ Blocks , ∃q ∈ Q̃2, such that: q(b′) ≤ q̂EM ,1(b
′)

Let b′ ∈ Blocks . We have:

q̂EM ,1(b
′) =

0 if b = b′

q̂EM ,0(b
′) if q̂May,0(b) < q̂EM ,0(b

′)

q̂EM ,0(b
′) + 1 if q̂May,0(b) ≥ q̂EM ,0(b

′) ∧ q̂EM ,0(b
′) < k

k if q̂May,0(b) ≥ q̂EM ,0(b
′) ∧ q̂EM ,0(b

′) = k

Let q̃0 ∈ Q̃0 such that q̃0(b
′) ≥ q̂EM ,0(b

′). Let q̃2 = update(q̃0, b) ∈ Q̃2. We show that q̃2 is a
good candidate, i.e. q̃2(b

′) ≥ q̂EM ,1(b
′).

q̃2(b
′) =

0 if b = b′

q̃0(b
′) if q̃0(b

′) ≥ q̃0(b)

q̃0(b
′) + 1 if q̃0(b

′) < q̃0(b) ∧ q̃0(b
′) < k

k if q̃0(b
′) < q̃0(b) ∧ q̃0(b

′) = k

We then proceed by case disjunction:

• If b = b′: q̃2(b
′) = 0 = q̂EM ,1(b

′).

• If b 6= b′ ∧ q̂May,0(b) < q̂EM ,0(b
′), then q̂EM ,1(b

′) = q̂EM ,0(b
′).

Moreover, b 6= b′ ⇒ q̃2(b
′) ≥ q̃0(b

′) ≥ q̂EM ,0(b
′) = q̂EM ,1(b

′).

• If b 6= b′ ∧ q̂May,0(b) ≥ q̂EM ,0(b
′) ∧ q̂EM ,0(b

′) < k, then q̂EM ,1(b
′) = q̂EM ,0(b

′) + 1.

– If q̃0(b
′) ≤ q̂May,0(b), then: q̃0(b

′) ≤ q̃0(b).

Moreover, b 6= b′ ⇒ q̃0(b
′) < q̃0(b), and thus: q̃2(b

′) ≥ q̂EM ,0(b
′) + 1 = q̂EM ,1(b

′).

– Otherwise, q̃0(b
′) > q̂May,0(b) and thus: q̃0(b

′) > q̂EM ,0(b
′).

∗ if q̃0(b
′) ≥ q̃0(b), then:

q̃2(b
′) = q̃0(b

′) ≥ q̂EM ,0(b
′) + 1 = q̂EM ,1(b

′)

∗ if q̃0(b
′) < q̃0(b) ∧ q̃0(b

′) < k, then:
q̃2(b

′) = q̃0(b
′) + 1 > q̂EM ,0(b

′) + 1 = q̂EM ,1(b
′)

∗ if q̃0(b
′) < q̃0(b) ∧ q̃0(b

′) = k, then:
q̃2(b

′) = k ≥ q̂EM ,1(b
′)

• If b 6= b′ ∧ q̂May,0(b) ≥ q̂EM ,0(b
′) ∧ q̂EM ,0(b

′) = k, then q̂EM ,1(b
′) = k.

�us: b 6= b′ ⇒ q̃2(b
′) ≥ q̃0(b

′) ≥ q̂EM ,0(b
′) = k ≥ q̂EM ,1(b

′)

In every case, we have: q̃2(b
′) ≥ q̂EM ,1(b

′).

�us, Q̃2 ∈ Q1, proving that Q2 ⊆ Q1

77

Similarly to the update and updateEH , one can show the consistency of the join operator ⊔EH
relatively to its concrete counterpart.

Lemma 86 (EH Join Consistency). �e join operator ⊔EH is correct:

∀((q̂EH ,1, q̂Must ,1), (q̂EH ,2, q̂Must ,2)) ∈ D
2
EH , ∀Q1 ∈ γEH (q̂EH ,1, q̂Must ,1), ∀Q2 ∈ γEH (q̂EH ,2, q̂Must ,2) :

Q1 ∪Q2 ∈ γEH ((q̂EH ,1, q̂Must ,1) ⊔EH (q̂EH ,2, q̂Must ,2)). (4.5)

Proof. Let ((q̂EH ,1, q̂Must ,1), (q̂EH ,2, q̂Must ,2)) ∈ D2
EH , Q1 ∈ γEH (q̂EH ,1, q̂Must ,1), Q2 ∈

γEH (q̂EH ,2, q̂Must ,2). We use the additional notation:

• Q3 = Q1 ∪Q2

• (q̂EH ,3, q̂Must ,3) = (q̂EH ,1, q̂Must ,1) ⊔EH (q̂EH ,2, q̂Must ,2)

We want to prove that: Q3 ∈ γEH (q̂EH ,3, q̂Must ,3).
Let b ∈ Blocks , min

q∈Q3

q(b) ≤ min
q∈Q1

q(b) ≤ q̂EH ,1(b). Similarly, min
q∈Q3

q(b) ≤ q̂EH ,2(b). �us,

min
q∈Q3

q(b) ≤ q̂EH ,3(b).

�en, using the consistency of the must join, we have: Q3 ∈ γEH (q̂EH ,3, q̂Must ,3)

As for the update , the consistency proof for the EM join is a very similar to the EH join
operator.

Lemma 87 (EM Join Consistency). �e join operator ⊔EM is correct:

∀((q̂EM ,1, q̂May,1), (q̂EM ,2, q̂May,2)) ∈ D
2
EM , ∀Q1 ∈ γEM (q̂EM ,1, q̂May,1), Q2 ∈ γEM (q̂EM ,2, q̂May,2) :

Q1 ∪Q2 ∈ γEM ((q̂EM ,1, q̂May,1) ⊔EM (q̂EM ,2, q̂May,2)). (4.6)

Proof. Let ((q̂EM ,1, q̂May,1), (q̂EM ,2, q̂May,2)) ∈ D2
EM , Q1 ∈ γEM (q̂EM ,1, q̂May,1), Q2 ∈

γEM (q̂EM ,2, q̂May,2). We use the additional notation:

• Q3 = Q1 ∪Q2

• (q̂EM ,3, q̂May,3) = (q̂EM ,1, q̂May,1) ⊔EM (q̂EM ,2, q̂May,2)

We want to prove that: Q3 ∈ γEM (q̂EM ,3, q̂May,3).
Let b ∈ Blocks , max

q∈Q3

q(b) ≥ max
q∈Q1

q(b) ≥ q̂EM ,1(b). Similarly, max
q∈Q3

q(b) ≥ q̂EM ,2(b). �us,

max
q∈Q3

q(b) ≥ q̂EM ,3(b).

�en, using the consistency of the may join, we have: Q3 ∈ γEM (q̂EM ,3, q̂May,3)

Using the previous results on the local consistency of all the operators involved in our analy-
ses, one can show the consistency as whole. �is will guarantee that if the initial abstract value
correctly abstracts the real initial cache states, then the analysis is correct at any point in the
program.

�eorem 88 (Analysis Soundness). �e collecting semantics is a member of both the EH and EM

abstract semantics:

∀v ∈ V : F (v) ∈ γEH (F
#
EH (v)) ∩ γEM (F#

EM (v))

78

Proof. Both the collecting semantics and the abstract EH semantics are defined as least solutions
to sets of equations, i.e., least fixed points of functions corresponding to these equations. �e two
domains are both finite for a given program, as the number of memory blocks is finite. �us, both
domains have finite ascending chains, and so the least fixed points can be obtained in a finite
number of Kleene iterations.

Let Fi : V → DLRU and F#
EH ,i : V → DEH denote the values reached in the ith Kleene

iteration:

∀v′ ∈ V : Fi+1(v
′) = F0(v

′) ∪
⋃

(v,v′)∈E

update(Fi(v), blocks(v)), (4.8)

∀v′ ∈ V : F#
EH ,i+1(v

′) = F#
EH ,0(v

′) ⊔EH
⊔

(v,v′)∈E

updateEH (F
#
EH ,i(v), blocks(v)). (4.9)

We prove by induction that for all i ∈ N, we have

∀v′ ∈ V : Fi(v
′) ∈ γEH (F

#
EH ,i(v

′)).

�is then implies the theorem, as due to finite ascending chains, there is a j ∈ N, such that the
least solutions F and F#

EH are Fj and F
#
EH ,j .

• Induction base (i = 0):

�is follows immediately from to the assumption that F0(v) ∈ γEH (F
#
EH ,0(v)).

• Induction step (i→ i+ 1):

Let v′ ∈ V be arbitrary. By induction hypothesis, we haveFi(v) ∈ γEH (F
#
EH ,i(v)) for all v ∈

V s.t. (v, v′) ∈ E. By Lemma 84 (local consistency) this implies update(Fi(v), blocks(v)) ∈
γEH (updateEH (F

#
EH ,i(v), blocks(v))) for all v ∈ V s.t. (v, v′) ∈ E. Applying Lemma 86

(join consistency) this in turn implies:⋃
(v,v′)∈E update(Fi(v), blocks(v)) ∈ γEH (

⊔
(v,v′)∈E) updateEH (F

#
EH ,i(v), blocks(v)).

Applying Lemma 86 again, as by assumption F0(v
′) ∈ γEH (F

#
EH ,0(v

′)), yields:

F0(v
′) ∪

⋃

(v,v′)∈E

update(Fi(v), blocks(v))

∈ γEH (F
#
EH ,0(v

′) ⊔EH

⊔

(v,v′)∈E

updateEH (F
#
EH ,i(v), blocks(v))), (4.10)

which, by (4.8) and (4.9), is equivalent to Fi+1(v
′) ∈ γEH (F

#
EH ,i+1(v

′)).

4.1.4 Experimental Evaluation

Experimental settings

To illustrate the behavior of the Definitely Unknown analysis, we implemented it in a tool called
OTAWA [BCRS10]. OTAWA is framework forWCET estimation, and provide several useful tools
to integrate our cache analyses. In our case, we benefit from CFG reconstruction and decoration

79

with memory accesses. We also reuse the abstract interpretation engine that comes with the
May/Must analysis.

We analyze 50 benchmarks from the TACLeBench [FAH+16] benchmark collection, which
is the successor of the Mälardalen collection and is widely used in the WCET community. �ese
benchmarks are compiled into an ARM executable, and have sizes that range from 18 cache blocks
for the smallest to more than 5000 blocks for the biggest. A majority of benchmarks (33 over 50)
have a size between 100 and 1000 memory blocks. Figure 4.7 shows the size of the benchmarks
using a logarithmic scale. �e cache configuration used in our experiment is 8 ways cache of 32
sets with blocks of 16 bytes for a total of 4KB.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

1000

re
c
u

rs
io

n

fa
c

d
u

ff

c
o
ve

r

m
a

tr
ix

1

b
in

a
ry

s
e

a
rc

h

b
s
o

rt

is
q

rt

b
it
o

n
ic

c
o

u
n

tn
e

g
a

ti
ve

in
s
e

rt
s
o

rt

p
ri

m
e

d
ijk

s
tr

a

iir

d
e

g
2

ra
d

ra
d

2
d

e
g

c
o

m
p

le
x
_

u
p

d
a

te
s

h
u

ff
_

d
e

c

fi
lt
e

rb
a

n
k

jf
d

c
ti
n

t

fi
r2

d
im

ff
t

s
h

a

lif
t

s
t

c
o

s
f

a
d

p
c
m

_
d

e
c

a
d

p
c
m

_
e

n
c

lu
d

c
m

p

a
n

a
g

ra
m

m
in

ve
r

c
jp

e
g

_
tr

a
n

s
u

p
p

p
e

tr
in

e
t

g
7

2
3

_
e

n
c

e
p

ic

m
d

5

s
ta

te
m

a
te

h
2

6
4

_
d

e
c

p
m

fm
re

f

q
u

ic
k
s
o

rt

ri
jn

d
a

e
l_

d
e

c

g
s
m

_
d

e
c

ri
jn

d
a

e
l_

e
n

c

a
u

d
io

b
e

a
m

c
u

b
ic

m
p

e
g

2

a
m

m
u

n
it
io

n

s
u

s
a

n

te
s
t3

Program

S
iz

e
 (

in
 n

u
m

b
e

r
o

f
m

e
m

o
ry

 b
lo

c
k
s
,

lo
g

 s
c
a

le
)

Figure 4.7 – Size of the benchmarks in number of cache blocks

Using these se�ings we evaluate the performance of the Definitely Unknown analysis by mea-
suring two values:

• First, we look at the number of accesses that are classified as Definitely Unknown and com-
pare it to the number of accesses that were le� unclassified by the may and must analyses.
By doing so, we estimate the reduction of uncertainty due to the Definitely Unknown anal-
ysis.

• Second, we measure the execution time of analyses, to evaluate the efficiency of the Defi-
nitely Unknown analysis in comparison of the may and must analyses.

Figure 4.8 shows for each benchmark how many accesses where classified by the Definitely

Unknown analysis among the accesses le� unclassified by the may and must analyses. �e total
height of a bar is the number block that the may and must analyses were not able to classify (NC
stands for “not classified”). �ese bars are split in two parts: i) a red part which shows the number
of blocks that the Definitely Unknown analysis was able to classified ii) a blue part (at the bo�om
of the red part) that shows the potential accesses that are still candidates for a refinement a�er
the Definitely Unknown analysis has been performed.

80

0

2000

4000

re
c
u

rs
io

n

fa
c

d
u

ff

c
o
ve

r

m
a

tr
ix

1

b
in

a
ry

s
e

a
rc

h

b
s
o

rt

is
q

rt

b
it
o

n
ic

c
o

u
n

tn
e

g
a

ti
ve

in
s
e

rt
s
o

rt

p
ri

m
e

d
ijk

s
tr

a

iir

d
e

g
2

ra
d

ra
d

2
d

e
g

c
o

m
p

le
x
_

u
p

d
a

te
s

h
u

ff
_

d
e

c

fi
lt
e

rb
a

n
k

jf
d

c
ti
n

t

fi
r2

d
im

ff
t

s
h

a

lif
t

s
t

c
o

s
f

a
d

p
c
m

_
d

e
c

a
d

p
c
m

_
e

n
c

lu
d

c
m

p

a
n

a
g

ra
m

m
in

ve
r

c
jp

e
g

_
tr

a
n

s
u

p
p

p
e

tr
in

e
t

g
7

2
3

_
e

n
c

e
p

ic

m
d

5

s
ta

te
m

a
te

h
2

6
4

_
d

e
c

p
m

fm
re

f

q
u

ic
k
s
o

rt

ri
jn

d
a

e
l_

d
e

c

g
s
m

_
d

e
c

ri
jn

d
a

e
l_

e
n

c

a
u

d
io

b
e

a
m

c
u

b
ic

m
p

e
g

2

a
m

m
u

n
it
io

n

s
u

s
a

n

te
s
t3

Program

N
u

m
b

e
r

o
f

a
c
c
e

s
s
e

s

Legend: DU NC − DU

Figure 4.8 – Number of blocks refined from Unknown to Definitely Unknown

�is experiment shows that the vast majority (more than 98.4% in geometric average) of the
accesses le� unclassified are in fact accesses that can both lead to a hit and a miss. By performing
this analysis we thus drastically reduce the number of accesses to refine. For instance, the maxi-
mum number of accesses reamining unclassified a�er this analysis is 56 for the benchmark called
susan (the total number of accesses is 3595). �is also shows that the May and Must analyses are
very efficient in practice. Among all the accesses they le� unclassified, less than 2% could be real
Always-Hit or Always-Miss in the worst case.

Figure 4.9 also shows the classification of accesses, but the first iteration of loops is unrolled.
In all this thesis, loop unrolling refers to a transformation of the CFGmanipulated by the analyzer,
as explained in Section 2.3.4, and not to a compile time optimization. Indeed, the typical behavior
of small loops is to produce cache misses during the first iteration, and cache hits a�erward. One
can thus argue that these definitely unknown blocks could have been easily refined by unrolling
the loops or performing a persistence analysis. However, our experiment validates our approach,
with more than 98.4% of the accesses classified by the Definitely Unknown analysis. Note that by
unrolling the first iteration of loops the number of accesses in some benchmarks highly increases.
�is phenomenon is due to nested loops. Indeed, by unrolling the first iteration of a loop, we
duplicate the loop body. Accesses that are nested in n loops are duplicated 2n times. However,
the number of accessse classified as Unknown or Definitely Unknown remains approximately the
same. For instance, in the case of the susan benchmark, the number of accesses goes from 4361
to 13950 due to several nested loop levels. However the number of Unknown accesses goes from
3595 to 3589, and the number of Definitely Unknown accesses goes from 3539 to 3541.

�e second set of experiments aims at measuring the cost of the Definitely Unknown analysis
relatively to theMay andMust analyses. Figure 4.10 shows the cost of both analyses in logarithmic
scale. In geometric average, the definitely unknown analysis is only 2.72 times slower than the
May and Must analyses.

Figure 4.11 shows the same comparison of costs when unrolling the first iteration of loops.
�is time, our analysis complete in less than 3.25 times the cost of the May and Must analyses.

81

0

2000

4000
re

c
u
rs

io
n

fa
c

d
u
ff

c
o
ve

r

m
a
tr

ix
1

b
in

a
ry

s
e
a
rc

h

b
s
o
rt

is
q
rt

b
it
o
n
ic

c
o
u
n
tn

e
g
a
ti
ve

in
s
e
rt

s
o
rt

p
ri

m
e

d
ijk

s
tr

a

iir

d
e
g
2
ra

d

ra
d
2
d
e
g

c
o
m

p
le

x
_
u
p
d
a
te

s

h
u
ff
_
d
e
c

fi
lt
e
rb

a
n
k

jf
d
c
ti
n
t

fi
r2

d
im

ff
t

s
h
a

lif
t

s
t

c
o
s
f

a
d
p
c
m

_
d
e
c

a
d
p
c
m

_
e
n
c

lu
d
c
m

p

a
n
a
g
ra

m

m
in

ve
r

c
jp

e
g
_
tr

a
n
s
u
p
p

p
e
tr

in
e
t

g
7
2
3
_
e
n
c

e
p
ic

m
d
5

s
ta

te
m

a
te

h
2
6
4
_
d
e
c

p
m

fm
re

f

q
u
ic

k
s
o
rt

ri
jn

d
a
e
l_

d
e
c

g
s
m

_
d
e
c

ri
jn

d
a
e
l_

e
n
c

a
u
d
io

b
e
a
m

c
u
b
ic

m
p
e
g
2

a
m

m
u
n
it
io

n

s
u
s
a
n

te
s
t3

Program

N
u
m

b
e
r

o
f
a
c
c
e
s
s
e
s

Legend: DU NC − DU

Figure 4.9 – Number of blocks refined from Unknown to Definitely Unknownwhen unrolling loops

1e+01

1e+03

1e+05

re
c
u

rs
io

n

fa
c

d
u

ff

c
o
ve

r

m
a

tr
ix

1

b
in

a
ry

s
e

a
rc

h

b
s
o

rt

is
q

rt

b
it
o

n
ic

c
o

u
n

tn
e

g
a

ti
ve

in
s
e

rt
s
o

rt

p
ri

m
e

d
ijk

s
tr

a

iir

d
e

g
2

ra
d

ra
d

2
d

e
g

c
o

m
p

le
x
_

u
p

d
a

te
s

h
u

ff
_

d
e

c

fi
lt
e

rb
a

n
k

jf
d

c
ti
n

t

fi
r2

d
im

ff
t

s
h

a

lif
t

s
t

c
o

s
f

a
d

p
c
m

_
d

e
c

a
d

p
c
m

_
e

n
c

lu
d

c
m

p

a
n

a
g

ra
m

m
in

ve
r

c
jp

e
g

_
tr

a
n

s
u

p
p

p
e

tr
in

e
t

g
7

2
3

_
e

n
c

e
p

ic

m
d

5

s
ta

te
m

a
te

h
2

6
4

_
d

e
c

p
m

fm
re

f

q
u

ic
k
s
o

rt

ri
jn

d
a

e
l_

d
e

c

g
s
m

_
d

e
c

ri
jn

d
a

e
l_

e
n

c

a
u

d
io

b
e

a
m

c
u

b
ic

m
p

e
g

2

a
m

m
u

n
it
io

n

s
u

s
a

n

te
s
t3

Program

A
n

a
ly

s
is

 e
xe

c
u

ti
o

n
 t

im
e

 (
in

 m
s
,

lo
g

 s
c
a

le
)

Analysis: Definitely Uknown May/Must

Figure 4.10 – Comparison of the May/Must and Definitely Unknown analysis

However, note that the execution time of both analyses (May/Must and Definitely Unknown)
highly increases for some benchmarks with deep nested loops.

Conclusion

We have demonstrated that the set of accesses classified as Unknown by the usual may and must
analyses can be considerably reduced by performing the Exist-Hit and Exist-Miss analyses. In par-
ticular, the accesses classified as Definitely Unknown by these analyses are optimally classified at a

82

1e+01

1e+03

1e+05

re
c
u

rs
io

n

fa
c

d
u

ff

c
o
ve

r

m
a

tr
ix

1

b
in

a
ry

s
e

a
rc

h

b
s
o

rt

is
q

rt

b
it
o

n
ic

c
o

u
n

tn
e

g
a

ti
ve

in
s
e

rt
s
o

rt

p
ri

m
e

d
ijk

s
tr

a

iir

d
e

g
2

ra
d

ra
d

2
d

e
g

c
o

m
p

le
x
_

u
p

d
a

te
s

h
u

ff
_

d
e

c

fi
lt
e

rb
a

n
k

jf
d

c
ti
n

t

fi
r2

d
im

ff
t

s
h

a

lif
t

s
t

c
o

s
f

a
d

p
c
m

_
d

e
c

a
d

p
c
m

_
e

n
c

lu
d

c
m

p

a
n

a
g

ra
m

m
in

ve
r

c
jp

e
g

_
tr

a
n

s
u

p
p

p
e

tr
in

e
t

g
7

2
3

_
e

n
c

e
p

ic

m
d

5

s
ta

te
m

a
te

h
2

6
4

_
d

e
c

p
m

fm
re

f

q
u

ic
k
s
o

rt

ri
jn

d
a

e
l_

d
e

c

g
s
m

_
d

e
c

ri
jn

d
a

e
l_

e
n

c

a
u

d
io

b
e

a
m

c
u

b
ic

m
p

e
g

2

a
m

m
u

n
it
io

n

s
u

s
a

n

te
s
t3

Program

A
n

a
ly

s
is

 e
xe

c
u

ti
o

n
 t

im
e

 (
in

 m
s
,

lo
g

 s
c
a

le
)

Analysis: Definitely Uknown May/Must

Figure 4.11 – Comparison of the May/Must and Definitely Unknown analysis when unrolling
loops

reasonable cost, avoiding more costly analyses. Moreover, the accesses not classified as Definitely
Unknown usually belong to one of the Exist-Hit or Exist-Miss category, and this information can
be used by further analysis. In the remaining of this chapter, we propose different approaches to
classify the remaining Unknown accesses.

4.2 Exact Analysis of LRU Cache by Model Checking

One of the question raised by the complexity results proved in Section 3 is the possibility of de-
signing an optimally precise cache analysis efficient in practice. �is section proposes an approach
that rely on a model-checker and an exact abstraction to achieve this goal.

Because the model-checking phase is based on an exact abstraction of the cache replacement
policy, our method, overall, is optimally precise: it answers precisely whether a given access is
always a hit, always a miss, or a hit in some executions and a miss in others3 (see “Result a�er
refinement” in Fig. 4.1). �is precision improvement in access classifications can be beneficial for
tools built on top of the cache analysis, as demonstrated in Section 5.

�e model-checking phase would be sufficient to resolve all accesses, but our experiments
show this does not scale; it is necessary to combine it with the abstract-interpretation phase
for tractability, thereby reducing (a) the number of model-checker calls, and (b) the size of each
model-checking problem.

3�is completeness is relative to an execution model where all control paths are feasible, disregarding the func-
tional semantics of the edges.

83

4.2.1 Block Focusing

Using the Definitely Unknown analysis described in the previous section, one can reduce the set
of accesses that can be refined into Always-Hit or Always-Miss. We shall now see how to classify
these remaining blocks using model checking. Not only is the model-checking phase sound, i.e.
its classifications are correct, it is also complete relative to our program model, i.e. there remain
no unclassified accesses: each access is classified as “always hit”, “always miss” or “definitely
unknown”. Remember that our analysis is based on the assumption that each path in the CFG is
semantically feasible.

In order to classify the remaining unclassified accesses, we feed the model checker a finite-
statemachinemodeling the cache behavior of the program, composed of i) amodel of the program,
yielding the possible sequences of memory accesses ii) a model of the cache. In this section, we
introduce a new cache model, focusing on the state of a particular memory block to be classified.

It would be possible to directly encode the control-flow graph of the program, adorned with
memory accesses, as one big finite-state system. A first step is obviously to slice that system per
cache set to make it smaller. Here we take this approach further by defining a model sound and
complete with respect to a given memory block a: parts of the model that have no impact on the
caching status of a are discarded, which greatly reduces the model’s size. For each unclassified
access, the analysis constructs a model focused on the memory block accessed, and queries the
model checker. Both the simplified program model and the focused cache model are derived
automatically, and do not require any manual interaction.

�e focused cache model is based on the following simple property of LRU: a memory block
is cached if and only if its age is less than the associativity k, or in other words, if there are less
than k younger blocks. In the following, without loss of generality, let a ∈ Blocks be the memory
block we want to focus the cache model on. If we are only interested in whether a is cached or
not, it suffices to track the set of blocks younger than a. Without any loss in precision concerning
a, we can abstract from the relative ages of the blocks younger than a and of those older than a.

�us, the domain of the focused cache model is D⊙ = P(Blocks) ∪ {⊣}. Here, ⊣ is used to
represent those cache states in which a is not cached. If a is cached, the analysis tracks the set
of blocks younger than a. We can relate the focused cache model to the concrete cache model
defined in Section 4.1.1 using an abstraction function mapping concrete cache states to focused
ones:

α⊙ : DLRU → D⊙

q 7→

{
⊣ if q(a) = k

{b ∈ Blocks, q(b) < q(a)} if q(a) < k
(4.11)

�e focused cache update update⊙ models a memory access as follows:

update⊙ : D⊙ × Blocks → D⊙

(Q̂, b) 7→

∅ if b = a

⊣ if b 6= a ∧ Q̂ = ⊣

Q̂ ∪ {b} if b 6= a ∧ Q̂ 6= ⊣ ∧ |Q̂ ∪ {b}| < k

⊣ if b 6= a ∧ Q̂ 6= ⊣ ∧ |Q̂ ∪ {b}| = k

(4.12)

Let us briefly explain the four cases above. If b = a (case 1), a becomes the most-recently-used
block and thus no other blocks are younger. If a is not in the cache and it is not accessed (case
2), then a remains outside of the cache. If another block is accessed, it is added to a’s younger set
(case 3) unless the access causes a’s eviction, because it is the kth distinct younger block (case 4).

84

Example. Figure 4.12 depicts a sequence of memory accesses and the resulting concrete and
focused cache states (with a focus on block a) starting from an empty cache of associativity 2. We
represent concrete cache states by showing the two blocks of age 0 and 1. �e example illustrates
that many concrete cache states may collapse to the same focused one. At the same time, the
focused cache model does not lose any information about the caching status of the focused block,
which is captured by the following lemma and theorem (see Section 4.2.2 for the proofs).

x y a v w

[−,−]

⊣

[x,−]

⊣

[y, x]

⊣

[a, y]

∅

[v, a]

{v}

[w, v]

⊣

Concrete cache model:

Focused cache model:

Figure 4.12 – Example: concrete vs. focused cache model.

Lemma 89 (Local Soundness and Completeness). �e focused cache update abstracts the concrete

cache update exactly:

∀q ∈ DLRU , ∀b ∈ Blocks : α⊙(update(q, b)) = update⊙(α⊙(q), b) (4.13)

�e focused collecting semantics is defined analogously to the collecting semantics as the least
solution to the following set of equations, where F⊙(v) denotes the set of reachable focused cache
configurations at each program location, and F⊙,0(v) = α⊙(F0(v)) for all v ∈ V :

∀v′ ∈ V : F⊙(v
′) = F⊙,0(v

′) ∪
⋃

(v,v′)∈E

update⊙(F⊙(v), blocks(v)), (4.14)

where update⊙ denotes the focused cache update function li�ed to sets of focused cache states,
i.e., update⊙(Q, b) = {update⊙(q, b), q ∈ Q}, and α⊙ is li�ed to sets of states, i.e., α⊙(Q) =
{α⊙(q), q ∈ Q}.

�eorem 90 (Analysis Soundness and Completeness). �e focused collecting semantics is exactly

the abstraction of the collecting semantics:

∀v ∈ V, α⊙(F (v)) = F⊙(v). (4.15)

Proof. From Lemma 89 it immediately follows that the li�ed focused update update⊙ exactly cor-
responds to the li�ed concrete cache update update .

Since the concrete domain is finite, the least fixed point of the system of equations defining the
concrete collecting semantics (Def. 4.1) is reached a�er a bounded number of Kleene iterations.
One then just applies the consistency lemmas in an induction proof.

�us we can employ the focused cache model in place of the concrete cache model without
any loss in precision to classify accesses to the focused block as “always hit”, “always miss”, or
“definitely unknown”.

For the program model, we simplify the CCG without affecting the correctness nor the preci-
sion of the analysis: i) If we know, from may analysis, that in a given program block a is never in
the cache, then this block cannot affect a’s eviction: thus we simplify the program model by not
including this block. ii) When we encode the set of blocks younger than a as a bit vector, we do
not include blocks that the may analysis proved not to be in the cache at that location: these bits
would anyway always be 0.

An example of the first simplification is shown on Figure 4.13. �e Figure 4.13a shows the
complete CCG, on which the May analysis has been performed. From the result, on can notice
that the beginning of the graph and the le� branch are not relevant when classifying a. �ey can
thus be removed from the program model.

85

d
a
e

c

d

b

f
a

[a, f, {d, e}, c]
[f, {d, e}, {a, c}, b]
[{d, e}, {a, c}, b,⊥]

[d, c, b,⊥]

[c, b,⊥,⊥]

[b,⊥,⊥,⊥]
[⊥,⊥,⊥,⊥]

[e, a, d, b]
[a, d, b,⊥]
[d, b,⊥,⊥]

(a) Program model to slice

a
e

f
a

(b) Sliced model

Figure 4.13 – Slicing a program model according to l-block a

4.2.2 Proof of Block focusing correctness

Lemma 89 (Local Soundness and Completeness). �e focused cache update abstracts the concrete

cache update exactly:

∀q ∈ DLRU , ∀b ∈ Blocks : α⊙(update(q, b)) = update⊙(α⊙(q), b) (4.13)

Proof. Let q = [b0, ..., bk−1] ∈ DLRU a reachable cache state and b ∈ Blocks a memory block.
We prove consistency by inspection of different possible cases. First half of the proof deals

with cache states that do not contain the interesting block a (i.e. ∀i ∈ {0, ..., k − 1}, bi 6= a).
Second half deals with cache states that contain it (i.e. ∃i ∈ {0, ..., k − 1}, bi = a). In both part,
we treat the cases where the block accessed b is a or not. Moreover, to treat a eviction, the second
half of the proof adds sub-cases for distinction of states containing a “at the end” of the cache
(near eviction).

• if ∀i ∈ {0, ..., k − 1}, bi 6= a (i.e. a is not in q), then we can distinguish two cases:

– if b = a then:

α⊙(update(q, b)) = α⊙(update([
6=a

b0 ,
6=a

b1 , ...,
6=a

bk−1], a))

= α⊙([a, b0, ..., bk−2])

= {}

update⊙(α⊙(q), b) = update⊙(α⊙([
6=a

b0 ,
6=a

b1 , ...,
6=a

bk−1]), a)

= update⊙(⊣, a)

= {}

So consistency holds.

86

– if b 6= a then:

α⊙(update(q, b)) = α⊙(update([
6=a

b0 ,
6=a

b1 , ...,
6=a

bk−1],
6=a

b))

= α⊙([
6=a

b′0 ,
6=a

b′1 , ...,
6=a

b′k−1]) where ∀i ∈ {0, ..., k − 1}, b′i ∈ {b0, ..., bk−1, b}

= ⊣

update⊙(α⊙(q), b) = update⊙(α⊙([
6=a

b0 ,
6=a

b1 , ...,
6=a

bk−1]), b)

= update⊙(⊣,
6=a

b)

= ⊣

So consistency holds.

• if ∃i ∈ {0, ..., k − 1} such that bi = a (i.e. a is in the cache), we also distinguish between
the cases b = a and b 6= a:

– if b = a then:

α⊙(update(q, b)) = α⊙(update([
6=a

b0 , ...,
6=a

bi−1, a, bi+1, ..., bk−1], a))

= α⊙([a, b0, ..., bi−1, bi+1, ..., bk−1])

= {}

update⊙(α⊙(q), b) = update⊙(α⊙([
6=a

b0 , ...,
6=a

bi−1, a, bi+1, ..., bk−1]), a)

= update⊙({b0, ..., bi−1}, a)

= {}

So consistency holds.

– if b 6= a, there are different cases depending on whether b is in the cache before or
a�er a and depending on whether a is the least recently used block:

∗ if there exists j < i such that bj = b (i.e. b is in the cache and is younger than a):

α⊙(update(q, b))

= α⊙(update([b0, ..., bj−1, b, bj+1, ..., bi−1, a, bi+1, ..., bk−1], b))

= α⊙([b, b0, ..., bj−1, bj+1, ..., bi−1, a, bi+1, ..., bk−1])

= {b, b0, ..., bj−1, bj+1, ..., bi−1}

= {b0, ..., bi−1}

update⊙(α⊙(q), b)

= update⊙(α⊙([b0, ..., bj−1, b, bj+1, ..., bi−1, a, bi+1, ..., bk−1]), b)

= update⊙({b0, ..., bj−1, b, bj+1, ..., bi−1}), b)

= update⊙({b0, ..., bi−1}, b)

= {b0, ..., bi−1}

So consistency holds.

87

∗ if there exists j > i such that bj = b (i.e. b is in the cache and is older than a):

α⊙(update(q, b))

= α⊙(update([b0, ..., bi−1, a, bi+1, ..., bj−1, b, bj+1, ..., bk−1], b))

= α⊙([b, b0, ..., bi−1, a, bi+1, ..., bj−1, bj+1, ..., bk−1], b)

= {b, b0, ..., bi−1}

update⊙(α⊙(q), b)

= update⊙(α⊙([b0, ..., bi−1, a, bi+1, ..., bj−1, b, bj+1, ..., bk−1]), b)

= update⊙({b0, ..., bi−1}, b)

= {b, b0, ...bi−1}

So consistency holds.

∗ if ∀j, bj 6= b and i 6= k − 1 (i.e. b is not in the cache and a is not the least recently
used block):

α⊙(update(q, b)) = α⊙(update([b0, ..., bi−1, a, bi+1, ..., bk−1], b))

= α⊙([b, b0, ..., bi−1, a, bi+1, ..., bk−2])

= {b, b0, ..., bi−1}

update⊙(α⊙(q), b) = update⊙(α⊙([b0, ..., bi−1, a, bi+1, ..., bk−1]), b)

= update⊙({b0, ..., bi−1, a}, b)

= {b, b0, ..., bi−1}

So consistency holds.

∗ if ∀j, bj 6= b and i = k− 1 (i.e. b is not in the cache and a is the least recently used
block):

α⊙(update(q, b)) = α⊙(update([b0, ..., bk−2, a], b))

= α⊙([b, b0, ..., bk−2])

= ⊣

update⊙(α⊙(q), b) = update⊙(α⊙([b0, ..., bk−2, a]), b)

= update⊙({b0, ..., bk−2}, b)

= ⊣

So consistency holds.

In all cases, consistency holds.

4.3 Exact Analysis of LRU Cache by Abstract Interpretation

In this section, we develop an analysis based on abstract interpretation that comes close to the
efficiency of the classical approach [AFMW96] while achieving exact classification of all memory
accesses as the model-checking approach described in Section 4.2. In other terms, we introduce

88

an exact and scalable analysis by carefully refining the abstraction and using suitable algorithms
and data structures.

Our main contribution in this Chapter is the introduction of a new exact abstraction for LRU
caches that is based on a partial order of cache states. To classify cache misses (cache hits), it is
sufficient to only keep minimal (maximal) elements w.r.t. this partial order. As a consequence, the
abstraction may be exponentially more succinct than the model-checking approach.

We improve the focused semantics presented in Section 4.2 by removing subsumed elements
with upward and downward closures. �is form of convergence acceleration preserves the preci-
sion of the final classification.

We discuss a suitable data structure for this abstraction based on zero-suppressed binary deci-
sion diagrams (ZDDs), and an implementation on top of Otawa [BCRS10] and Cudd [Som01].
Our experimental evaluation shows an analysis speedup of up to 950 compared with the prior
exact approach 4.2. �e geometric mean of the speedup across all studied benchmarks is at least
94. On the other hand, compared with the imprecise age-based analysis [AFMW96], we observe
an average slowdown across all benchmarks of only 4.12.

Collecting Semantics vs Focused Semantics vs Antichain

v0 : ∅ v1 v2 vn vn+1
a

b1

ε

b2

ε

bn−1

ε

bn

ε

Figure 4.14 – Example where collecting and focused semantics are unnecessarily detailed and
inefficient. ε means “no access”.

Consider the CCG of 4.14, with an associativity k > n, and an empty initial cache. At the last
control location vn+1, the possible cache states are all subsequences of bn, . . . , b1 followed by a
and possibly empty lines, e.g. (b5, b3, b1, a,⊥,⊥). �ere are therefore 2n reachable cache states at
vn+1, all of which appear in the collecting semantics of the program composed with the cache.

�e “block-focused” abstraction, which was also applied in the model checking approach 4.2
when encoding cache problems into model-checking reachability problems, records only the set
of blocks younger than the block of interest. Here, if our block of interest is a, this abstraction thus
yields at vn+1 the set of subsets of {b1, . . . , bn}. Of course, symbolic set representation techniques
may have a compact representation for such a set, but the main issue is that this set keeps too
much information.

If our goal is to prove the existence of a “hit” on an access to memory block a further down
the execution, then it is sufficient to keep, in this set, ∅, corresponding to a path composed of
the access to a followed by a sequence of no accesses ε. More generally, it is sufficient to keep
only the minimal elements (with respect to the inclusion ordering) from this set, which can be
exponentially more succinct, as in this example. Similarly, if our goal is to prove the existence
of a “miss” on a further down the execution, then it is sufficient to keep, in this set, {b1, . . . , bn},
corresponding to a path composed of the access to a followed by a sequence of accesses to b1, . . . ,
bn. More generally, it is sufficient to keep only the maximal elements from this set.

4On a number of benchmarks the prior exact approach timed out at 12 hours. For these benchmarks, we conser-
vatively assume an analysis time of 12 hours, and may thus underestimate the actual speedup, had the analysis been
run to completion.

89

�is is the main difference between our analysis and the “focused” model that we fed into the
model checker 4.2: the “focused”model contains unnecessary information (non-minimal elements
for the Always-miss analysis, non-maximal elements for the Always-hit analysis), which increases
model-checking times. We discard these in our analysis.

�e following section formally defines our new Always-Hit and Always-Miss analyses. �e
Always-hit analysis (respectively Always-miss) computes the antichain of maximal elements (re-
spectively minimal elements) i.e. the downward (respectively upward) closure of reachable states.

4.3.1 Exact Analyses as Fixed-Point Problems

Always-Hit Analysis

To get a be�er idea of what the Always-hit analysis computes let us first recall the definitions of
antichain and upper set, and illustrate this analysis with an example.

Definition 91. An antichain is a subset of an ordered set such that no two distinct elements of that

subset are comparable. An upper set (respectively lower set) is a set such that if an element is in this

set, then all elements larger (respectively, smaller) than it are also in the set.

Example 92. Assume that a basic block BBi may be reached with cache states

F (BBi) = {[c, b, e, a], [b, c, d, a], [b, a,⊥,⊥]}

�e possible a-focused states are: F⊙(BBi) = {{b, c, e}, {b, c, d}, {b}}. Since {b} is strictly included
in {b, c, e} (and in {b, c, d}), it may not contribute to cache misses that would not also occur following

{b, c, e} (and {b, c, d}) and can be removed without affecting soundness; the antichain of themaximal

elements of F⊙(BBi) is {{b, c, e}, {b, c, d}}, which will be called Fmax
⊙ (BBi).

In all that follows, the ordering will be the inclusion ordering ⊂.
Recall that for any S ∈ F⊙(BBi), S 6= ⊣ means that at entry of basic block BBi, there is a

reachable cache state of the form (b0, . . . , b|S|−1, a, . . .) where S = {b0, . . . , b|S|−1}. An access
to block a at entry of BBi “always hits” if and only if it “may not miss”, that is, if there is no
execution trace leading to a miss at this location, i.e. ⊣ /∈ F⊙(BBi).

Definition 93. Let Q̂
b
−→ Q̂′ denote the transition “upon an access to block b, b 6= a, the cache may

move from an a-focused state Q̂ to an a-focused state Q̂′”. Recall that Q̂ may be ⊣ (a is not in the

cache) or a subset of cache blocks, not containing a, of cardinality at most k − 1. �is deterministic

transition relation is defined as follows:

• ⊣
b
−→ ⊣;

• Q̂
b
−→ Q̂ ∪ {b} for |Q̂ ∪ {b}| < k;

• Q̂
b
−→ ⊣ for |Q̂ ∪ {b}| = k.

Definition 94. For Q̂, Q̂′ ∈ D⊙, let Q̂,
↓
−→ Q̂′ denote a downward closure step:

• ⊣
↓
−→ y for any y;

• x
↓
−→ y for any x, y 6= ⊣, y ⊆ x.

90

Example 95. {b, c, e}
↓
−→ Q̂′ for any Q̂′ ∈ {∅, {b}, {c}, {e}, {b, c}, {b, e}, {c, e}, {b, c, e}}

Lemma 96. Assume there are Q̂1, Q̂2, Q̂3, and b such that Q̂1
↓
−→ Q̂2

b
−→ Q̂3. �en there exists Q̂′

2

such that Q̂1
b
−→ Q̂′

2

↓
−→ Q̂3.

Proof. As the transition relation is deterministic, Q̂′
2 is uniquely determined by Q̂1 and b.

We distinguish two cases based on the value of Q̂′
2:

1. If Q̂′
2 = ⊣, then the results follows immediately, as ⊣

↓
−→ Q̂3 for any Q̂3.

2. If Q̂′
2 6= ⊣, then Q̂

′
2 = Q̂1 ∪ {b} with |Q̂

′
2| < k. �en Q̂1 6= ⊣ and Q̂2 ⊆ Q̂1, and so

Q̂3 = Q̂2 ∪ {b} ⊆ Q̂1 ∪ {b} = Q̂′
2.

Corollary 97. �ere exists a sequence of the form

Q̂0
b0−→ Q̂′

0

↓
−→ Q̂1

b1−→ Q̂′
1

↓
−→ . . . Q̂n

bn−→ Q̂′
n

↓
−→ Q̂n+1

if and only if there exists a sequence of the form

Q̂0
b0−→ Q̂′′

1
b1−→ Q̂′′

2 . . .
bn−→ Q̂′′

n

↓
−→ Q̂n+1

It is thus equivalent to compute the reachable states of the a-focused semantics (for transitions
different from a), then apply downward closure, and to apply downward closure at every step
during the computation of reachable states. In addition, it is obvious that ⊣ is in a set if and only
if it is in its downward closure. It is thus equivalent to test for a “may miss” on the reachable
states of the a-focused semantics and on their downward closure.

�is suggests two possible (and equivalent, in a sense) simplifications to the focused semantics
if our goal is to find places where an access to a may be a miss:

Closure Replace F⊙(BBi) by its down-closure F ↓
⊙(BBi): S

′ ∈ F ↓
⊙(BBi) if and only if there

exists S ∈ F⊙(BBi) such that S ′ ⊆ S.

Subsumption removal Replace F⊙(BBi) by the antichain of its maximal elements:
S ∈ Fmax

⊙ (BBi) if and only if S ∈ F⊙(BBi) and there is no S ′ ∈ F⊙(BBi) such
that S (S ′.

Note that F ↓
⊙(BBi) is the down-closure of F

max
⊙ (BBi), and that Fmax

⊙ (BBi) is the antichain of

maximal elements ofF ↓
⊙(BBi); thusF

max
⊙ (BBi) is just an alternative representation forF

↓
⊙(BBi).

Our idea is to directly compute Fmax
⊙ (BBi).

Always-Miss Analysis

�is subsection presents the Always-miss analysis which is the dual of the Always-hit analysis of
Section 4.3.1. A control location “always misses” if and only if it “may not hit”, that is, if there is
no execution trace leading to a hit at this location.

Definition 98. For Q̂, Q̂′ ∈ D⊙, let Q̂
↑
−→ Q̂′ denote an upward closure step:

• Q̂
↑
−→ ⊣ for any Q̂;

91

• Q̂
↑
−→ Q̂′ for any Q̂, Q̂′ 6= ⊣, Q̂ ⊆ Q̂′.

Lemma 99. Assume there are Q̂1, Q̂2, Q̂3, and b such that Q̂1
↑
−→ Q̂2

b
−→ Q̂3. �en there exists Q̂′

2

such that Q̂1
b
−→ Q̂′

2

↑
−→ Q̂3.

Proof. We distinguish two cases based on the value of Q̂3:

1. If Q̂3 = ⊣, then the results follows immediately, as Q̂′
2

↑
−→ ⊣ for any Q̂′

2.

2. If Q̂3 6= ⊣, then Q̂3 = Q̂2 ∪ {b} with |Q̂3| < k. �en Q̂2 6= ⊣ and Q̂1 ⊆ Q̂2, and so

Q̂′
2 = Q̂1 ∪ {b} ⊆ Q̂2 ∪ {b} = Q̂3.

Corollary 100. �ere exists a sequence of the form

Q̂0
b0−→ Q̂′

0

↑
−→ Q̂1

b1−→ Q̂′
1

↑
−→ . . . Q̂n

bn−→ Q̂′
n

↑
−→ Q̂n+1

if and only if there exists a sequence of the form

Q̂0
b0−→ Q̂′′

1
b1−→ Q̂′′

2 . . .
bn−→ Q̂′′

n

↑
−→ Q̂n+1

It is thus equivalent to compute the reachable states of the a-focused semantics (for transitions
different from a), then apply upward closure, and to apply upward closure at every step during

the computation of reachable states. In addition, it is obvious that there exists Q̂ in a set, Q̂ 6= ⊣,
if and only if there exists Q̂′ in the upward closure of the same set such that Q̂′ 6= ⊣. It is thus
equivalent to test for a “may hit” on the reachable states of the a-focused semantics and on their
upward closure.

�is again suggests two possible simplifications to the focused semantics if our goal is to find
places where an access to a may be a hit:

Closure Replace F⊙(BBi) by its up-closure F ↑
⊙(BBi): Q̂

′ ∈ F ↑
⊙(BBi) if and only if there exists

Q̂ ∈ F⊙(BBi) such that Q̂ ⊆ Q̂′.

Subsumption removal Replace F⊙(BBi) by the antichain of its minimal elements:

Q̂ ∈ Fmin
⊙ (BBi) if and only if Q̂ ∈ F⊙(BBi) and there is no Q̂′ ∈ F⊙(BBi) such

that Q̂′ (Q̂.

Note that F ↑
⊙(BBi) is the up-closure of F

min
⊙ (BBi), and that F

min
⊙ (BBi) is the antichain of mini-

mal elements of F ↑
⊙(BBi); thus F

min
⊙ (BBi) is just an alternative representation for F

↑
⊙(BBi). Our

idea is to directly compute Fmin
⊙ (BBi).

A Remark on Lattice Height

We replace the focused semantics by its upward or downward closure; this is a form of conver-
gence acceleration, albeit one that preserves the precision of the final result. We shall see in 4.4
that this improves practical performance considerably compared to a version that checks the fo-
cused semantics in a model checker. It is however unlikely that this improvement translates to
the worst case; let us see why.

�e number of iterations of a data-flow or abstract interpretation analysis is bounded by the
height of the analysis la�ice, that is, the maximal length of a strictly increasing sequence. How-
ever, this height does not change by imposing that the sets should be lower (respectively upper)
closed: just apply the following lemma to T , the set of subsets of blocks of cardinality at most
k − 1 (plus ⊣) ordered by inclusion (respectively, reverse inclusion).

92

Lemma 101. Let (T,≤) be a partially ordered finite set. �e la�ice of lower subsets of T , ordered
by inclusion, has height |T |, the same height as the la�ice of subsets of T .

Proof. Order T topologically: t1, . . . , t|T |, such that ∀i, j : ti ≤ tj =⇒ i ≤ j. �e sequence
(ui)i=0,...,|T |, with ui = {t1, . . . , ti}, is a strictly ascending sequence of lower sets.

4.3.2 Data Structures and Algorithms

In 4.3.1 we defined a collecting semantics for concrete cache states, then, in two steps (1. focused
semantics, 2. closures), showed that there is a cache hit (respectively, a cache miss) in the concrete
semantics if and only if there is a cache hit (respectively, a cache miss) in an upward-closed (re-
spectively, downward-closed) semantics, and that upward-closed (respectively, downward-closed)
sets may be represented by the antichains of their minimal (respectively, maximal) elements.

Computation by Abstract Interpretation

�e abstracted semantics in upward-closed (or, downward-closed) sets may be computed by a
standard data-flow/abstract interpretation algorithm, by upward iterations, as follows.

To each initial control point we initially a�ach an initialization value (see below). For a se-
mantics focused on accesses to a, we consider that each access to the focus block a is reset the
current abstract value to the ∅. �en, we iterate in the usual abstract interpretation fashion: we
maintain a “working set”, initially containing the initial locations; we take a control point x from
the working set, update the abstract values at the end point of edges going out of x (using the
union operation on upper or lower sets), and add these end points to the working set if their value
has changed (equality testing). �e iterations stop when the working set becomes empty. It is a
classical result [Cou78, §2.9] that the final result of such iterations does not depend on the iter-
ation ordering, and in fact several elements from the working set may be treated in parallel; the
only requirement is that all elements from the working set are eventually treated.

�e sequence of updates to the set decorating a given control location is strictly ascending,
in a finite la�ice; thus its length is bounded by the height h of that la�ice. If Access is the set of
memory accesses, then the total number of updates is bounded by |Access| · h. Recall that the
height of the la�ice of subsets of a set X is |X|.

If we implement the focused semantics directly, then we compute over sets of subsets of size
at most k − 1 of Blocks \ {a}, completed with ⊣; the number of such subsets is bounded by∑k−1

k=0(|Access| − 1)k and thus h ≤ (|Access|−1)k

|Access|−2
+ 1. �e cost could thus be exponential in the

associativity; Indeed, as seen in 3, a polynomial-time algorithm is unlikely, since the problems are
NP-complete.

Closed Sets Implementation

We initially a�empted adding closure steps to the focused semantics, and running a model
checker on the resulting systems. �e performance was however disappointing, worse than
model-checking the focused semantics itself as described in Section 4.2. �e model checker
(nuXmv) was representing its sets of sets of blocks using state-of-the-art binary decision
diagrams; we thus did not expect any gain by going to our own implementation of iterations over
the same structure. We thus moved from representing a closed set by its content to representing
it by the antichain of its minimal (respectively, maximal) elements. �ere remains the question
of how to store and compute upon the antichains representing those sets.

93

We then tried storing an antichain simply as a sorted set of subsets of Blocks , each subset
being represented as the list of its elements. Experimentally, this approach was inefficient; let
us explain why, algorithmically. For once, when computing the antichain for the union of two
upward or downward closed sets S and S ′, one takes the antichainsW andW ′ representing S and
S ′ and eliminates redundancies; if such a naive representation is used, one needs to enumerate
all pairs of items fromW ×W ′ — there is no way to immediately identify which parts ofW and
W ′ are subsumed, or even to identify which parts are identical. Furthermore, there is no sharing
of representation between related antichains.

Binary decision diagrams are one well-known data structure for representations of sets of
states; as explained in Section 2.2 they share identical subsets, and allow fast equality testing. All
operations over such diagrams can be “memoı̈zed”, meaning that when an operation is run twice
between identical subparts of existing diagrams, the result may be cached. We store an antichain,
a set S 6= {⊣} of sets of blocks, as a zero-suppressed decision diagram (ZDD) [Min01, Mis14]
[Knu11, §7.1.4, p.249], a variant of binary decision diagrams optimized for representing sets of
sparse sets of items.

Basic Functions for exact Always-Miss and exact Always-Hit Analyses

We assume that all control states are reachable (unreachable states are easily discarded by a graph
traversal). �e starting points of the analyses focused on a is the CCG initial control points.

�e operations that we need for antichains defining upper sets, for the Always-Miss analysis,
are

Initialization to empty cache Return {⊣}.

Initialization to undefined cache state Return {∅}.

Initialization to unreachable state Return ∅.

Access to address b 6= a: Return {Q̂ ∪ {b} | Q̂ ∈ S} if S 6= {⊣}, {⊣} otherwise.

Test for eviction Returns whether there exists Q̂ ∈ S such that |Q̂| ≥ k, in which case S is
replaced by {⊣}.

Access to tracked block a: Return {∅}

Limitation to associativity LetX = {Q̂ | Q̂ ∈ S ∧ |Q̂| ≤ k− 1}. Return {⊣} ifX = ∅, andX
otherwise 5.

Union of upper sets represented by antichain of minimal elements of S and S ′: Return {⊣} if

S = S ′ = {⊣}. Return S if S ′ = {⊣} and conversely. Return {Q̂ | Q̂ ∈ S∧¬∃Q̂′ ∈ S ′ Q̂′ (

Q̂} ∪ {Q̂′ | Q̂′ ∈ S ′ ∧ ¬∃Q̂ ∈ S Q̂ (Q̂′} otherwise.

Equality testing given S and S ′, return whether S = S ′.

Example 102. Let S be the upper set generated by the antichain
{
{a}, {b, c}

}
, and S ′ the upper set

generated by the antichain
{
{b}, {a, c}, {d}

}
. �e union of the two upper sets is an up-set generated

by the union of these two antichains. However, this union is not an antichain because it contains

redundant items: {a, c} is subsumed by {a}, {b, c} is subsumed by {b}. �e antichain of minimal

elements of S ∪ S ′ is thus
{
{a}, {b}, {d}

}
.

5�is means that execution traces that cannot lead to a “hit” on the next access to a are discarded. When the last
trace leading to hit is removed, abstract value is set to {⊣}.

94

�e operations that we need for antichains defining lower sets, for the may-miss analysis, are

Initialization to empty or undefined cache state Return {⊣}.

Initialization to unreachable state Return ∅.

Accesses Same as with upper sets.

Test for eviction Returns whether there exists Q̂ ∈ S such that |Q̂| ≥ k, in which case S is
replaced by {⊣}

Union of lower sets represented by antichains of maximal elements S and S ′: Return {⊣} if

S = {⊣} or S ′ = {⊣}. Return {Q̂ | Q̂ ∈ S ∧¬∃Q̂′ ∈ S ′ Q̂ (Q̂′} ∪ {Q̂′ | Q̂′ ∈ S ′ ∧¬∃Q̂ ∈

S Q̂′ (Q̂} otherwise.

Equality testing Same as with upper sets.

�e union of antichains with subsumption removal was supported by an extension [Mis14] of
the ZDD library that we used. �e only operations not supported were the test for eviction and
the limitation to associativity. We implemented them by recursive descent over the structure of
the ZDD, with an extra parameter for the current depth (number of items already seen in the set),
and memoı̈zation of the results. As in the Cudd library, we call “then” the branch where the top
variable is true (i.e. the branch that contains the cache block associated to the current node) and
“else” the branch associated to value false (i.e. the branch that does not contain that cache block).
As shown in Algorithm 1, the general case (case 3) of the algorithm simply consists in truncating
the “then” and “else” branches of the current nodes. When the number of “then” branches taken
reaches the associativity (case 2), we remove all further “then” branches (they only lead to sets of
cardinality greater than the associativity). Finally, the algorithm may stop exploring a branch for
two different reasons: a) either the node treated is a leaf of the ZDD (case 0), or b) the result of
the truncate function has already been computed and memoı̈zed (case 1).

Algorithm 1 Truncate(zdd, n) as a recursive function

1: function Truncate(zdd, n)
2: if zdd = ∅ or zdd = {∅} then
3: return zdd ⊲ Case 0. Leaf of the ZDD DAG
4: end if

5: res← cacheLookup(Truncate, zdd, n) ⊲ Case 1. Already computed
6: if res then
7: return res
8: end if

9: if n = 0 then ⊲ Case 2. Associativity is reached
10: return Truncate(zdd.else, 0) ⊲ Case 2. Else branch recursion
11: else ⊲ Case 3. General case
12: then← Truncate(zdd.then, n− 1) ⊲ Case 3. �en branch recursion
13: else← Truncate(zdd.else, n) ⊲ Case 3. Else branch recursion
14: return ZDD(zdd.var, then, else)
15: end if

16: end function

95

4.4 Experiments

In order to evaluate the efficiency of our exact analyses, we run several experiments that are
described in this section. In particular, the three following points are discussed below:

• First, the actual goal of an exact analysis is to classify more accesses. We thus evaluate the
precision of our exact analyses by measuring the gain of accesses classified as Always-Hit
and Always-Miss relatively to the May and Must analyses.

• �en, we investigate the behavior of our two exact approaches in term of analysis time, to
measure the gain of the antichain approach over the model checking based solution.

• Finally, we compare the efficiency of the best of our two exact analyses to the May Must
approach.

4.4.1 Refinement of Accesses classification by Exact Analyses

As a first experiment, we look at the improvement on the classification of accesses. Because one
is usually more interested in classifying accesses in Always-Hit and Always-Miss, we measure
the number of additional accesses classified as such and compare it to the number of accesses
that were already classified as such by the May and Must analyses. Figure 4.15 shows the that

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●
●

●●

●

●

●●

●

●
●●

●

●

●●

●

●

●

●

●●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

0%

10%

20%

30%

40%

50%

re
c
u

rs
io

n

fa
c

d
u

ff

c
o
ve

r

m
a

tr
ix

1

b
in

a
ry

s
e

a
rc

h

b
s
o

rt

is
q

rt

b
it
o

n
ic

c
o

u
n

tn
e

g
a

ti
ve

in
s
e

rt
s
o

rt

p
ri

m
e

d
ijk

s
tr

a

iir

d
e

g
2

ra
d

ra
d

2
d

e
g

c
o

m
p

le
x
_

u
p

d
a

te
s

h
u

ff
_

d
e

c

fi
lt
e

rb
a

n
k

jf
d

c
ti
n

t

fi
r2

d
im

ff
t

s
h

a

lif
t

s
t

c
o

s
f

a
d

p
c
m

_
d

e
c

a
d

p
c
m

_
e

n
c

lu
d

c
m

p

a
n

a
g

ra
m

m
in

ve
r

c
jp

e
g

_
tr

a
n

s
u

p
p

p
e

tr
in

e
t

g
7

2
3

_
e

n
c

e
p

ic

m
d

5

s
ta

te
m

a
te

h
2

6
4

_
d

e
c

p
m

fm
re

f

q
u

ic
k
s
o

rt

ri
jn

d
a

e
l_

d
e

c

g
s
m

_
d

e
c

ri
jn

d
a

e
l_

e
n

c

a
u

d
io

b
e

a
m

c
u

b
ic

m
p

e
g

2

a
m

m
u

n
it
io

n

s
u

s
a

n

te
s
t3

Program

Im
p

ro
ve

m
e

n
t

o
f

A
H

 a
n

d
 A

M
 b

y
 e

x
a

c
t

a
n

a
ly

s
is

Unrolling: ● ●With Without

Figure 4.15 – Classification improvement

an exact analysis improves the classification of the May/Must approach in the vast majority of
cases. In our se�ings, performing an exact analysis leads to an average of 18.2% (18.8% when
unrolling the loops) of blocks classified as Always-Hit or Always-Miss, whereas the May and Must
analyses only classified 16.8% (17.7% when unrolling loops). �is also suggests that performing
an exact analysis leads to be�er classification than unrolling loops, without increasing the size
of the program model. Finally, note that both the antichain and the model-checking approaches
leads to the same conclusion, because they compute the same classification.

96

4.4.2 Efficiency comparison of Model Checking and ZDD approach

To validate the benefit of pruning subsumed younger sets, we compare the analysis time of both
exact analyses6. Results are shown on Figure 4.16 (log. scale). In particular, one can notice that
the ZDD based approach is faster on all significant benchmarks, and that the observed speed-up
o�en reaches more than 100. More precisely, the average speed-up (geometric mean) is 19.5 in
the classical se�ings, and 12.7 when unrolling loops7. �e maximum speed-up reached is 297.4
(322.5 when unrolling the first iteration of loops).

●

●

●

●

●
●

●

●
● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●
●

x10x100x1000x1000

1e−01

1e+01

1e+03

1e+05

1e−01 1e+01 1e+03 1e+05

Age−based + DU + ZDD (execution time in s, log scale)

A
g

e
−

b
a

s
e

d
 +

 D
U

 +
 M

C
 (

e
xe

c
u

ti
o

n
 t

im
e

 i
n

 s
,

lo
g

 s
c
a

le
)

Unrolling: ● ●With Without

Figure 4.16 – Efficiency comparison in analysis time

4.4.3 May/Must and Exact analyses execution time comparison

Finally, to ascertain the efficiency of the exact analysis (May/Must analysis + Definitely Unknown
analysis + ZDD approach), we compare it to the May/Must analysis. Figure 4.17 presents the
analysis time required by both approaches. For the vast majority of benchmarks, we are able to
provide a precise classification in less than 10 times the delay required by the May/Must analysis.
In particular, it shows that one can obtain an exact classification in 4.12 timesmore time in average
(5.05 when unrolling loops). Finally, note that somemeasure for the smallest benchmark are noisy.

6Here, we compare the ZDD approach to BDD-based model checker. Our experiments tend to show that using
IC3 instead of the BDD-based algorithm does not change the results.

7note that this secondmeasure does not take into account two benchmarks forwhich themodel checking approach
reached a time out.

97

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x1

x0.1

1e−02

1e+00

1e+02

1e+04

1e−02 1e+00 1e+02 1e+04

Age−based + DU + ZDD (execution time in s, log scale)

A
g

e
−

b
a

s
e

d
 (

e
xe

c
u

ti
o

n
 t

im
e

 i
n

 s
,

lo
g

 s
c
a

le
)

Unrolling: ● ●With Without

Figure 4.17 – Efficiency comparison in analysis time

Indeed, using our approach, it is impossible to obtain an exact analysis faster than performing the
May and Must analysis: our analysis performs a May/Must approximation in the first place. �e
small variation observed is due to the fact that the two measures (May/Must only, and exact
approach) come from different runs of the analyzer.

98

Chapter 5

Applications

5.1 WCET Application

Deciding if the WCET of a program is below a given bound, for all execution paths, all inputs, all
possible hardware starting configurations, has prohibitive complexity. One thus usually relies on
an over-approximation of the WCET instead. �e challenge is then to design safe analyses (i.e,̇
that guarantee that the obtained bound is an over-approximation of the WCET) that yield bounds
close enough to the actual WCET to be useful. In order to obtain precise bounds on WCET, one
must take into account the microarchitecture (pipelines, caches, etc.).

Instruction pipelines provide instruction-level parallelism by spli�ing the execution of instruc-
tions into several stages. An instruction can thus be fetched while another is decoded, a third is
executing and a last one is writing to the register file. �us, instruction executions overlap, and ne-
glecting the pipeline behavior, by assuming that in the worst case instructions execute as though
sequentially, would result in a very pessimistic WCET estimation. In some architectures, pipeline
models are complex and must take into account, for instance, certain instructions using certain
execution units for several cycles and blocking other instructions that might use these units. �e
number of pipeline states to consider may thus explode.

In addition to pipeline effects, caches must be condidered when bounding the WCET of a
program. Indeed, retrieving data from the main memory (cache miss) instead of the cache (cache
hit) can be several orders of magnitude more costly. Naively assuming that every memory access
results in a cachemiss would thus highly over-estimate the actualWCET of the analyzed program.
�e purpose of the cache analysis is thus to classify memory accesses into cache hits (data is
retrieved from the cache) and cache misses (data is retrieved from main memory, or from a more
distant cache).

Unfortunately, cache memories and pipelines interact, and are thus difficult to analyze in com-
plete isolation. Indeed, the behavior of the pipeline may depend on whether some instruction is in
the cache or not. For instance, an out-of-order processor pick the instructions to execute among
the instructions already issued (i.e. once the processor knows the instructions dependencies). De-
pending on instruction cache misses, some of the instructions might not be available. In case
the cache analysis is unable to classify a memory access as a hit or a miss, both cases have to
be treated to precisely derive the possible pipeline states, with two consequences: the computed
WCET bound may become too pessimistic, and the pipeline analysis needs to take more pipeline
states into account. �is may lead to combinatorial explosion inside the pipeline analysis. �us,
deriving precise information about the cache behavior can reduce the cost of the pipeline analysis
in addition to reducing the WCET estimation.

Caches differ in a number of architectural parameters, including their replacement policy,

99

which defines which memory block is to be evicted from the cache to make room for newer
data. Analyses are specific to each replacement policy. Chapter 4 proposes precise analyses of in-
struction caches implementing the Least Recently Used (LRU) policy. We show that these analyses
are optimally precise under the assumption that all program paths are feasible, meaning they give
the most precise sound classification of accesses into hits, misses, and “it depends on the execu-
tion”. �ese analyses are costlier than those commonly used for that purpose (which classify into
hits, misses, and “I don’t know”), typically 4 times slower. In this section we show that despite
that, our precise instruction cache analysis can greatly reduce (more than 10 hours) the overall
analysis time compared to the classical analysis, because the added precision can greatly reduce
the number of cases that the pipeline analysis has to take into account, and thus the cost of the
pipeline analysis.

In the following section, we give some background about micro-architectural analyses: in
particular how pipeline analyses compute execution times from instruction sequences. Section 5.1
explains how our precise cache analysis speeds up the pipeline analysis used in OTAWA , a
WCET estimation framework. Finally, Section 5.2 describes our experiments on the impact of
cache analysis on pipeline analysis, and interprets the results.

Pipeline Analysis

Pipelined processors split the execution of instructions into several smaller steps performed by
different parts (called pipeline stages) of the CPU circuit. Instead of waiting for one instruction to
complete before executing the next one, as in older or simpler processors, a pipelined processor
thus executes several instructions in parallel. One o�en distinguishes five stages: fetch, decode,
execute, memory, and write-back. �e execute step of an instruction and the decode step of the
following instruction may then be performed simultaneously. In the ideal case, the delay to issue
one instruction is equal to the time needed for an instruction to go through one of the pipeline
stages. �e ideal pipeline behavior is shown in Table 5.1. In this example, each of the 5 instructions
require 5 cycles to be executed. However, the whole sequence of instructions can be executed in
only 9 cycles by using all the pipeline stages in parallel.

Clock cycle

Inst 1 2 3 4 5 6 7 8 9

1 FE DE EX MEM WB

2 FE DE EX MEM WB

3 FE DE EX MEM WB

4 FE DE EX MEM WB

5 FE DE EX MEM WB

Table 5.1 – Instruction pipeline

In practice, starting the execution of an instruction stage before the end of the previous one
is not always possible. One reason is that some instructions may use one pipeline stage for more
than one cycle. For example, some complex floating-point arithmetic operations may use the
same functional unit for several cycles in the execution stage; thus other arithmetic instructions
entering the pipeline a�erwards may be stalled until the operation is complete.

In addition to these resource conflicts, two instructions may exhibit a control dependency
or a data dependency. A data dependency occurs when the result of an instruction is used by
a following instruction: then, the execution step of the second instruction must occur a�er the
write-back step of the first instruction. In some processors, the old (and incorrect) value read in

100

the register file would then be used as an operand for the second instruction; more commonly, the
second instruction is stalled until its operand is available. Such an extra delay is called a bubble.
When a bubble is introduced in a pipeline stage, instructions in the preceding stages are stalled
for one cycle, whereas instructions in following stages continue their executions.

Micro-architectural events external to the pipeline, such as cache misses or branch mispre-
diction, can also lead to bubbles: indeed, if an instruction needs as operand a value read by a
preceding load instruction, but this value is not in the cache yet, it will be stalled until the value
is available. All these sources of pipeline delays might accumulate or partially compensate each
other, making the exact execution time of a basic block highly dependent on the execution context
(pipeline state, cache state, etc.). In out-of-order processors, that is, processors that can execute
instructions not in their semantic order depending on the availability of operands and execution
units, things are even more complex.

In the following, we briefly describe the pipeline analysis as performed by OTAWA . A more
precise description is available in [RS09]. As a first approximation, the pipeline analysis consists
in evaluating theWCET of every basic block, i.e. theWCET of the associated instruction sequence.
As mentioned previously, the execution time of such a sequence is influenced by dependencies
and resource conflicts between instructions involved. To extract a safe WCET approximation, all
hazards that can occur during the basic block execution have to be considered. Among all the
possible hazards combinations in the basic block instruction sequence, the one that results in the
highest execution time defines the basic block’s WCET.

�is naive approach is safe, but it might lead to pessimist WCET bounds because it treats
basic blocks in isolation. In particular, no assumption can be made about the initial pipeline
state to derive safe WCET bounds. An improvement [RS09] is to take the execution context into
account when evaluating the WCET of a basic block. Ideally, the context would define the exact
set of pipeline states reachable at the basic block entry. �is is however not feasible in practice,
because of the huge number of program paths to consider. Instead, Otawa, when analyzing a basic
block, uses a partial context derived from the execution of the previous basic block [RS09]. More
precisely, if the basic block v follows the basic block u, the pipeline analysis evaluates the WCET
of v by considering the instruction sequence uv as a whole. �e WCET of v, defined as the delay
between the termination of the last instruction of u and the termination of the last instruction of
v, is then expressed as a function of the pipeline state at the entry of u. In case the block v has
several predecessors, the process is repeated for each of them, and the maximum of the WCET
obtained is used to define the bound on the WCET of v.

In addition to the pipeline dynamics, the pipeline analysis has to take into account external
events, which are sources of nondeterminism. A memory load results in different behaviors of the
pipeline depending on how many cycles it takes to complete, which in turn depends on whether
the requested data is in the cache. For a “definitely unknown” cache access, both hit and miss
cases must be taken into account by the pipeline analysis. �is also applies to accesses classified
as “unknown” by an imprecise cache analysis, even though they always result in a hit or in a miss.
�us, lack of precision in the cache analysis may result not only in overestimation of WCET, but
also in increases in the number of combinations to be considered in the pipeline analysis and thus
in higher analysis times.

Note that it is not always safe to take only the miss case into account if the goal is to obtain a
safe upper bound on the WCET. Some architectures indeed exhibit so called timing anomalies: a
local increase of the execution time (e.g. because of a cache miss) may lead to a global reduction
of the execution time [RWT+06].

101

Exact cache analysis for WCET within OTAWA

OTAWABinaryLoop bounds

CFG Reconstruction

CFG

Cache Analysis

Access classification

Pipeline Analysis

BB timing info

ILP Generator

ILP

ILP Solver

WCET estimation

Figure 5.1 – OTAWA Workflow

�e precise cache analysis described in Chapter 4 is implemented as a plugin of OTAWA ,
a framework for WCET estimation. �e overall workflow of OTAWA is shown on Figure 5.1.
First, the program CFG is reconstructed from the binary code. �en, the cache analysis explores
this CFG and classifies every memory access as Always-Hit, Always-Miss or Definitely Unknown.
Using this information, the pipeline analysis provides a WCET for each basic block as described
above. Timing information is then used to produce an integer linear programming problem with
an objective function modeling the execution time, and a set of constraints that encode the CFG
structure and the loop bounds1. Maximizing the objective function under these constraints gives
an upper-bound on the actual program Worst-Case Execution Time.

�e default version of OTAWA uses the classical age-based LRU analysis [AFMW96]. We thus
compared OTAWA with that imprecise analysis to OTAWA with our exact analysis.

5.2 Experiments

We evaluated the impact of our precise cache analysis on the WCET analysis on two aspects:

1. Wemeasured how tighter our precise analysis makes theWCET bounds. Indeed, by running
a precise cache analysis some block classified as Unknown are refined into Always-Hit or
Always-Miss. �is, especially refinements into Always-Hit, may result in a tighter overall
bound.

2. We measured how much time was needed to perform the cache analysis, the pipeline anal-
ysis, and the overall analysis, using the classical and the exact cache analyses.

1Unbounded loops obviously lead to unbounded execution time.

102

To evaluate these two aspects, we analyzed 50 benchmarks from the TACLeBench [FAH+16]
benchmark collection. Each benchmark was analyzed twice: first using the classical May/Must
cache analysis (see [AFMW96]), then using our precise cache analysis (see Chapter 4).

�e instruction cache we consider stores memory blocks of 16 bytes, has associativity 8 and 4
cache sets. �is low number of cache sets is not a limitation of our approach, but it is mandatory
to get meaningful results despite the relatively small size of the benchmarks. Indeed, when using
a higher number of cache sets (64 is a common number for L1 instruction caches), the number
of cache blocks mapping each cache set is very low, and lower than the associativity, thus no
eviction takes place and analysis is trivial. We assume a delay of 10 cycles when accessing the
main memory (i.e. in case of cache miss) and a one cycle delay when accessing the cache (i.e. in
case of cache hit).

�e pipeline analyzed consists of 4 stages (fetch, decode, execute and commit). Each of this
stage has a latency of 1 cycle. In particular, the execute stage has a unique functional unit which is
able to perform any instruction in one cycle. In addition, the pipeline introduces a queue between
the fetch and decode stage that is able to store up to 2 instructions.

Because of the prohibitive cost of running the complete pipeline analysis on some benchmarks,
we limit the total WCET analysis time to 24 hours. �is timeout is reached when the program
under analysis has some basic blocks with long instruction sequences. For these blocks, the high
number of events leads to an intractable number of executions.

Finally, note that we do not unroll the first iteration of loops in these experiments. If OTAWA

provides a CFG transformation pass for unrolling loops, the effect on loop bounds is not auto-
matically estimated. For instance, in the case of a loop that can execute at most n times, one
can find in the program ILP a constraint of the form xbackedge ≤ n where xbackedge is the variable
indicating how many times the loop backedge has been executed. When the first iteration of the
loop is unrolled, this constraint should be adapted to take into account the unrolled iteration and
become xbackedge ≤ n− 1. Another possibility is to locate in the graph the edge corresponding to
the unrolled backedge and to add the constraint xbackedge + xunrolled backedge ≤ n. In case of nested
loops, both methods can be used, either adapting the arithmetical expression used to bound the
number of execution of all backedges, either bounding the sum of executions of all copies of the
same backedge. �ese modifications of the ILP are not automatically handled by OTAWA , lead-
ing to coarse WCET over-estimation when unrolling loops even with more precise pipeline and
cache analyses results. �us, we did not unroll the loops for this set of experiments

5.2.1 WCET comparison

As mentioned above, the bound on the WCET is expected to be lower when performing a pre-
cise cache analysis. However, the reduction is modest: on average (geometric mean), the WCET
estimation was reduced by only 0.8%. Figure 5.2a and Figure 5.2b show the improvement of the
WCET in number of cycles and percentage. Note that we only show benchmarks which both
WCET analyses terminate in less than 24 hours.

�is low reduction can be explained by looking at the details of the cache analysis results.
Indeed, among the accesses refined using our precise analysis, most of them are refined from
Unknown to Always-Miss or Definitely Unknown, and not from Unknown to Always-Hit. Refining
a block from Unknown to Always-Missmay reduce theWCET estimation due to timing anomalies,
but this is not the case on the simple platform we use. Generally, it is more probable that refining
an Unknown access to Always-Hit leads to a be�er WCET bounds than refining it to Always-Miss.

103

 0

 50000

100000

150000

200000

m
a
tr

ix
1

b
s
o
rt

is
q
rt

b
in

a
ry

s
e
a
rc

h
c
o
u
n
tn

e
g
a
ti
ve

p
ri

m
e

h
u
ff
_
d
e
c

d
ijk

s
tr

a
in

s
e
rt

s
o
rt

d
e
g
2
ra

d
ra

d
2
d
e
g

s
h
a

fi
lt
e
rb

a
n
k

iir
p
e
tr

in
e
t

fi
r2

d
im

c
o
m

p
le

x
_
u
p
d
a
te

s
ff
t

g
7
2
3
_
e
n
c

a
d
p
c
m

_
e
n
c

m
d
5

s
t

m
in

ve
r

lu
d
c
m

p
c
o
ve

r
c
o
s
f

s
ta

te
m

a
te

a
u
d
io

b
e
a
m

fm
re

f
lif

t
c
u
b
ic

te
s
t3

a
d
p
c
m

_
d
e
c

ri
jn

d
a
e
l_

d
e
c

Program

W
C

E
T

 i
m

p
ro

ve
m

e
n

t
(i
n

 c
y
c
le

s
)

(a) WCET Improvement in cycles

0

2

4

6

8

m
a
tr

ix
1

b
s
o
rt

is
q
rt

b
in

a
ry

s
e
a
rc

h

c
o
u
n
tn

e
g
a
ti
ve

p
ri

m
e

h
u
ff
_
d
e
c

d
ijk

s
tr

a

in
s
e
rt

s
o
rt

d
e
g
2
ra

d

ra
d
2
d
e
g

s
h
a

fi
lt
e
rb

a
n
k

iir

p
e
tr

in
e
t

fi
r2

d
im

c
o
m

p
le

x
_
u
p
d
a
te

s

ff
t

g
7
2
3
_
e
n
c

a
d
p
c
m

_
e
n
c

m
d
5

s
t

m
in

ve
r

lu
d
c
m

p

c
o
ve

r

c
o
s
f

s
ta

te
m

a
te

a
u
d
io

b
e
a
m

fm
re

f

lif
t

c
u
b
ic

te
s
t3

a
d
p
c
m

_
d
e
c

ri
jn

d
a
e
l_

d
e
c

Program

W
C

E
T

 i
m

p
ro

ve
m

e
n

t
(i
n

 %
)

(b) WCET Improvement in percentage

Figure 5.2 – WCET reduction under exact cache analysis

5.2.2 Analysis time comparison

In order to evaluate the benefits of running a precise cache analysis to speed the pipeline analysis
up, we look at the cumulative costs of both analyses. In our experimental se�ings, this total cost
is almost equal to the whole WCET analysis cost. �e other steps of the WCET analysis, includ-
ing CFG reconstruction and ILP solving, have minor cost in comparison to cache and pipeline
analyses.

Table 5.2 shows the analysis time of all benchmarks (cache analysis, pipeline analysis, and
total of both analyses) depending on the cache analysis employed. Differences of total analysis
time in bold in the last column enhances the benchmarks where the precise cache analysis leads
to shorter WCET analysis. It shows that our approach leads to important reductions of the global
analysis time.

Note that for some benchmarks (adpcm dec, ammunition, duff, epic, fir2dim, fmref, ludcmp,
statemate, in italic in Table 5.2), the pipeline analysis is longer when a precise cache analysis is
performed. �is can be due to some noise in the measurements, but another phenomenon can ex-
plain these deviations. Indeed, in addition to derive all the possible execution time of a basic block,
the pipeline analysis summarizes these values by two values, one over-approximating the “nor-
mal” execution time of the basic block, and one “exceptional” execution time taking into account
the penalties due to events. Intuitively, events that are frequents, but have low penalties should
be accounted into the “normal” approximation, whereas events that are rare but costly should
be accounted in the “exceptional” approximation. �e algorithm classifying execution time into
these two categories is usually cheap in comparison to the pipeline states exploration. However,
it might explain the counter-intuitive phenomenon observed. For instance, assuming one event
(like a cache miss) is much more costly than the others, it will be considered as the “exceptional”
behavior and treated separately. If this event is removed by the precise cache analysis, then the
pipeline analysis will try to split the remaining events into the “normal” ones and “exceptional”
ones. Depending on the algorithm used to perform the split, this might lead to a higher pipeline
analysis time.

Table 5.2 also shows that for one benchmark (gsm dec) the pipeline analysis terminates be-
cause the number of events was reduced by the precise cache analysis. For this benchmark the
pipeline analysis does not finish in 24 hours under the May/Must analysis, whereas it terminates
in less than 2 hours under our precise cache analysis. As mentioned previously, this compensa-

104

Analysis time (in s)
Cache Analysis Pipeline Analysis Total

program May/Must Precise Difference May/Must Precise Difference May/Must Precise Difference Ratio

adpcm dec < 0.1 0.2 0.2 13157.2 13160.3 3.1 13157.2 13160.5 3.3 1.00
adpcm enc < 0.1 0.2 0.2 4.2 3.8 -0.4 4.2 4.0 -0.2 0.98
ammunition 733.2 3232.9 2499.7 15.9 16.0 < 0.1 749.1 3248.9 2499.8 4.34
anagram 0.2 0.5 0.4 1.7 1.4 -0.3 1.8 1.9 < 0.1 1.05
audiobeam 18.6 109.7 91.1 15.4 13.8 -1.6 34.0 123.5 89.5 3.63
binarysearch < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.96
bitonic < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.95
bsort < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 1.32
cjpeg transupp 0.2 0.6 0.4 1.5 1.3 -0.2 1.7 1.9 0.2 1.13
complex updates < 0.1 0.3 0.2 1.6 1.6 < 0.1 1.6 1.9 0.2 1.15
cosf 3.1 22.5 19.3 6.7 6.2 -0.5 9.8 28.6 18.8 2.92
countnegative < 0.1 < 0.1 < 0.1 0.2 < 0.1 -0.1 0.2 0.2 < 0.1 0.72
cover 2.6 13.9 11.3 0.3 0.3 < 0.1 2.9 14.2 11.3 4.87
cubic 173.7 928.4 754.7 372.4 365.2 -7.2 546.1 1293.6 747.5 2.37
deg2rad < 0.1 0.2 0.1 0.7 0.7 < 0.1 0.8 0.9 0.1 1.14
dijkstra < 0.1 < 0.1 < 0.1 0.4 0.4 < 0.1 0.4 0.4 < 0.1 1.01
duff < 0.1 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 0.1 < 0.1 1.25
epic 0.9 5.7 4.8 606.6 614.2 7.7 607.5 620.0 12.5 1.02
fac < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 1.41
� < 0.1 0.4 0.4 2.1 2.0 < 0.1 2.2 2.5 0.3 1.14
filterbank < 0.1 0.3 0.2 1.1 1.1 < 0.1 1.1 1.3 0.2 1.19
fir2dim 0.1 0.9 0.7 1.2 1.3 < 0.1 1.3 2.1 0.8 1.61
fmref 42.9 197.9 155.0 14.3 15.4 1.1 57.2 213.3 156.0 3.73
g723 enc < 0.1 0.6 0.5 3.5 1.5 -2.0 3.6 2.1 -1.5 0.59
gsm dec 0.2 0.7 0.5 timeout 7095.6 NA timeout 7096.3 NAi NAii

h264 dec < 0.1 0.1 0.1 timeout timeout NA timeout timeout NA NA
huff dec < 0.1 < 0.1 < 0.1 0.3 0.3 < 0.1 0.3 0.4 < 0.1 1.10
iir < 0.1 0.2 0.2 1.2 1.2 < 0.1 1.3 1.4 0.2 1.12
insertsort < 0.1 < 0.1 < 0.1 0.8 0.7 < 0.1 0.8 0.7 < 0.1 0.97
isqrt < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.94
jfdctint < 0.1 < 0.1 < 0.1 timeout timeout NA timeout timeout NA NA
li� < 0.1 0.2 0.2 1112.4 282.3 -830.0 1112.4 282.6 -829.8 0.25
ludcmp 0.6 3.0 2.4 5.0 5.1 0.1 5.6 8.1 2.5 1.45
matrix1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 1.46
md5 < 0.1 0.2 0.2 5.1 3.2 -1.9 5.2 3.4 -1.8 0.66
minver 0.5 2.3 1.8 4.9 4.1 -0.8 5.4 6.3 0.9 1.17
mpeg2 7.1 33.4 26.4 timeout timeout NA timeout timeout NA NA
petrinet < 0.1 0.4 0.4 1.4 1.1 -0.4 1.4 1.5 < 0.1 1.02
pm 36.8 173.4 136.6 timeout timeout NA timeout timeout NA NA
prime < 0.1 < 0.1 < 0.1 0.2 0.2 < 0.1 0.2 0.2 < 0.1 1.14
quicksort 12.4 88.2 75.8 11.7 11.1 -0.6 24.1 99.3 75.2 4.13
rad2deg < 0.1 0.2 0.2 0.8 0.7 < 0.1 0.9 1.0 0.1 1.15
recursion < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 1.52
rijndael dec < 0.1 0.4 0.4 50927.3 14924.3 -36003.0 50927.3 14924.7 -36002.6 0.29
rijndael enc < 0.1 0.4 0.4 timeout timeout NA timeout timeout NA NA
sha < 0.1 0.4 0.3 0.9 0.8 -0.1 1.0 1.1 0.2 1.17
st 0.6 3.7 3.1 3.6 3.6 < 0.1 4.3 7.3 3.1 1.73
statemate 0.2 1.0 0.8 49.2 51.4 2.2 49.4 52.4 3.0 1.06
susan 50.3 305.2 254.8 timeout timeout NA timeout timeout NA NA
test3 13.2 40.0 26.8 4933.3 4799.6 -133.8 4946.5 4839.5 -106.9 0.98

Table 5.2 – Execution time of cache and pipeline analyses

tion of the extra cache analysis cost by the pipeline analysis cost is due to the lower number of
states to explore. For example, using the precise cache analysis when analyzing rijndael dec and
li� reduces the cumulated number of events from 599 to 499 for rijndael dec, and from 257 to 175
for li�. As a consequence, the total analysis time for analyzing these benchmarks drops by 70%
(10 hours) and 75% (13 minutes) respectively. On the other hand, when the precise cache analysis
fails to reduce the total analysis time, the increase of the wcet analysis time is modest.

Figure 5.3 summarizes the impact of precise cache analysis on the WCET analysis. �e blue

iReal improvement is beyond -79303.7s
iiReal ratio is below 0.0821

105

bars show the amount of time devoted to cache analysis. �e other bar shows the time spent
in pipeline analysis. It can be green, when performing the precise analysis make the pipeline
analysis faster, or red otherwise. Finally, note that no bar is shown in case the pipeline analysis
did not terminate.

1e+02

1e+05

1e+08

fa
c

re
c
u

rs
io

n

b
s
o

rt

b
in

a
ry

s
e

a
rc

h

m
a

tr
ix

1

b
it
o

n
ic

is
q

rt

d
u

ff

c
o

u
n

tn
e

g
a

ti
ve

in
s
e

rt
s
o

rt

p
ri

m
e

d
ijk

s
tr

a

h
u

ff
_

d
e

c

iir

jf
d

c
ti
n

t

c
o

m
p

le
x
_

u
p

d
a

te
s

d
e

g
2

ra
d

ra
d

2
d

e
g

h
2

6
4

_
d

e
c

fi
lt
e

rb
a

n
k

s
h

a

fi
r2

d
im

ff
t

a
d

p
c
m

_
d

e
c

a
d

p
c
m

_
e

n
c

lif
t

a
n

a
g

ra
m

c
o
ve

r

c
o

s
f

c
jp

e
g

_
tr

a
n

s
u

p
p

lu
d

c
m

p

g
7

2
3

_
e

n
c

s
t

m
d

5

m
in

ve
r

p
e

tr
in

e
t

e
p

ic

ri
jn

d
a

e
l_

d
e

c

g
s
m

_
d

e
c

ri
jn

d
a

e
l_

e
n

c

q
u

ic
k
s
o

rt

p
m

s
ta

te
m

a
te

fm
re

f

a
u

d
io

b
e

a
m

c
u

b
ic

m
p

e
g

2

a
m

m
u

n
it
io

n

s
u

s
a

n

te
s
t3

Program

Im
p
a
c
t
o
f
p
re

c
is

e
 a

n
a
ly

s
is

 o
n
 t
h
e
 W

C
E

T
 a

n
a
ly

s
is

 (
in

 m
s
,
lo

g
 s

c
a
le

) Legend: time lost in cache analysis time lost in pipeline analysis time win in pipeline analysis

Figure 5.3 – Benefit of the precise cache analysis on overall analysis time

Figure 5.4 compares the number of events (aggregated over all basic blocks) generated by
the May/Must cache analysis to the number of events generated by our complete exact cache
analysis. �is figure only represents benchmarks for which the pipeline analysis terminated. In
our experiments, we measure an average reduction of the number of events by 9.2%. Because
cache memory is the only source of pipeline events in our se�ing, this implies that our precise
cache analysis classifies 9.2% of the Unknown accesses into Always-Hit or Always-Miss in average.

Perspectives

�is chapter investigates the relation between cache and pipeline analyses and shows that per-
forming a different cache analysis might impact the performance of the pipeline analysis as well.
Moreover, the collaboration between cache and pipeline analyses could be improved. In OTAWA ,
the pipeline analysis is performed separately in the context of the pipeline states provided by
each preceding basic block. However, we compute a single classification of accesses for each ba-
sic block. We could instead compute this classification separately for each preceding basic block.
�is could yield be�er and faster analysis when certain blocks are classified as “definitely un-
known” because they are always a hit when control flows from one preceding basic block, and
always a miss when control flows from another basic block.

In addition, our exact cache analysis could be applied on demand, where it seems that im-
proved precision would help most. For example, one could refine accesses occurring in frequently
executed basic blocks, based on the provided loop bounds.

Furthermore, it could be interesting to consider the impact of precise cache analysis on other
analyses related to caches, e.g. on analyses taking into account task preemption. A task pre-
empting another one performs memory accesses and thus pollutes the content of the cache of the
preempted task. When this happens, the preempted task usually suffers additional cache misses

106

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

1000

10000

100 1000 10000

Number of events with the May/Must analysis (log scale)

N
u

m
b

e
r

o
f

e
ve

n
ts

 w
it
h

 t
h

e
 p

re
c
is

e
 a

n
a

ly
s
is

 (
lo

g
 s

c
a

le
)

Figure 5.4 – Benefit of the precise cache analysis in terms of pipeline events generated

when resumed, and its associated WCET o�en increases. Some approaches [AMR10, ZGJ+17]
tackle this problem by bounding the maximum Cache-Related Preemption Delay (CRPD) of the
preempted task. By refining the classification of accesses in both tasks, our analysis could reduce
the CRPD bound if adapted to a preemption-sensitive cache analysis.

Similarly, it would be interesting to evaluate our analysis in the context of multicore CPUs.
Indeed, a core might suffer interference from other cores when accessing a shared memory, be-
cause the memory bus is already used. In this situation, the memory access is delayed, increasing
the task WCET. By refining some memory accesses from the Unknown category to Always-Hit,
our approach could reduce the number of interferences to consider.

Conclusion

Finally, we have shown that using a more precise cache analysis can reduce the overall time to
perform a complete WCET estimation. Indeed, because of the possibility of timing anomalies, a
sound pipeline analysis has to consider a high number of pipeline executions, which may become
untractable. By reducing uncertainty about the cache behavior, a precise cache analysis eliminates
some of these possible executions, speeding the pipeline analysis up. In some cases, a cache
analysis performed in less than one second reduces the pipeline analysis from 10 hours or more,
bringing the total analysis time to a few hours.

107

5.3 Security

As shown in [Ber05, CLS06, KSWH00], cache memories can be used by an a�acker to retrieve
secret information from a program execution. Intuitively, the value of some secret data might
impact the behavior of the program manipulating them, and caches then provide a way for an
a�acker to observe these variations of the program behavior. �ree kind of side-channel a�acks
are usually distinguished in the case of caches:

• Timing a�acks: Cache memories influence the execution time of program. �us, by mea-
suring the overall execution time of a victim, an a�acker can estimate the number of hits
and misses that occurred during the execution. In case these numbers are correlated with
the secret data, the a�acker get some information about the secret data.

• Access-based a�acks: �ese a�acks require the a�acker and the victim to share the same
platform. In this se�ing, the a�acker fills the cache and measures the latency of its own
memory accesses later on. Using these measures the a�acker can guess what were the in-
structions executed or data loaded by the victim, and deduce the secret data. �ese a�acks
are usually more powerful than timing a�acks because the a�acker acquires fine grain in-
formation about the cache content. Indeed, the a�acker can monitor separately every cache
set, or even cache line in case of shared memory between the a�acker and the victim.

• Trace-based a�acks: In some cases, an a�acker measure or guess the outcome (hit or miss)
of every cache access of the victim. �is can be done for example by measuring the elec-
tromagnetic emission or power consumption of the CPU, and is usually done on embedded
systems like smart cards. If the a�acker possesses (a copy of) the victim program, he can
link the hit/miss trace obtained to the execution path taken in the program and get some
information about the secret data manipulated.

One solution to avoid information leakage through the cache is to rely on constant-
programming techniques, that consist in removing all dependencies between secret data and
memory accesses. By doing so, any observation made by an a�acker on the program behavior
can not be linked back to any sensitive information. �e main advantage of this method is that
it can be used to counter a vast set of microarchitectural a�acks. However, it imposes strong
constraint on the program and can easily lead to false positive. To refine this kind of analysis,
one can perform hardware analyses that retrieve information about the microarchitectural state
that can be used to weaken the hard constraints coming from constant-programming.

�e cache analyses that we know are geared specifically toward a security goal are CacheAudit
[DKMR15] and CacheFix [CR18]. CacheAudit uses abstract interpretation to quantify the amount
of information leaked by a program, while CacheFix uses an SMT-solver to either prove the ab-
sence of side-channels or give examples of differing execution traces and theoretical ways to fix
those differences.

In this thesis, we focus on the trace-based a�ack that target instruction caches. One reason for
such a�acks being difficult to spot by hand is that a vulnerable access (i.e. that allows the a�acker
to distinguish between two execution traces) might be located far away from the instruction han-
dling the sensitive data. Figure 5.5 shows two examples of cache conflict graphs vulnerable2 to
trace-based a�ack. Both cases consist in a test that leaks its outcome through the cache. In the
first case (Figure 5.5a), the a�acker can get two different hit/miss traces: (miss, hit, miss) on the
le� path and (miss, miss, miss) on the right path. Obviously, the source of the leak is the repeated

2assuming an empty initial cache, a single cache set and 4 ways.

108

access to the memory block a on the le� path. �e second case (Figure 5.5b) is similar, but the
leak appears at the very end of the program. In this situation, the information leakage occurs
a�er the two branches have merged, because the variation of the cache content induced by the
test survives the merging of path. In practice, this kind of information leakage can appear far
away from the junction of paths, making them difficult to spot.

�is section describes some cache analyses3 that gives some feedback to the developer, by
identifying program points where this kind of distant vulnerability may appear. Note that we do
not claim to spot every vulnerability and, for instance, our analyses would not detect the leakage
illustrated on Figure 5.5a.

d

c

b

a

a

(a) Vulnerability due to unbalanced branches

a

d

c

b

a

(b) Distant vulnerability

Figure 5.5 – A CFG and the associated CCG for a fully associative cache

�e main idea behind our analyses is that information leakage as illustrated by Figure 5.5b
occurs when the outcome of a memory access change depending on a secret value. A coarse
approximation of the set of such memory accesses is thus given by the Definitely Unknown clas-
sification which captures all accesses which outcome can both be hit or miss. �us, we consider
all Definitely Unknown memory accesses as potential source of information leakage. In addition,
when aDefinitely Unknown access leads to a hit, it is interesting to knowwhere the block accessed
is loaded. Indeed, this information can help the developer to:

• remove some false positives. Locating the access that loads the leaking blocks makes iden-
tification of the paths leading to a hit easier. If these path are not feasible, there is no
information leakage.

• locate the test which outcome is potentially leaking. For example, if a program consists in a
sequence of tests similar to Figure 5.5b followed by aDefinitely Unknown access, the location
where the corresponding block is loaded indicates which of the test is leaking information.

5.3.1 Program model and semantics

�e program model used to perform our analyses is similar to previous model used and based on
the cache conflict graph of a given program and cache set. However, our analyses aim at locating
the source of information leakage, i.e. the access that loads the blocks leaking information when
accessed again. We thus model the program to analyze as a graph of its control flow, decorated
by the memory accesses to the chosen cache set. Because we focus on analyzing the instruction
cache these accesses are in fact instructions and are thus assumed to be unique in the graph.

3�is work was done in collaboration with Marva Ramarijaona.

109

More formally, the program is modeled by a graph (Access , E), where E ⊆ Access2. We note
I ⊆ Access the set of accesses that can be reached from the program entry point without making
any access to the chosen cache set. In case of a fully associative cache I is a singleton containing
the access to the very first instruction of the program. In addition, we note blk : Access → Blocks

the function that maps an access to the block it accesses.
In this model, a program execution is described by the sequence σ of accesses it performs.

Definition 103. We define Σ the set of valid finite access sequences in the program:

Σ = {ε} ∪ {σ = σ0.σ1.σn ∈ Access∗, σ0 ∈ I ∧ ∀i ∈ {0, . . . , n− 1}, (σi, σi+1) ∈ E}

where ε is the empty sequence

Σ is will be the concrete domain of our analyses. To classify an access as vulnerable, it is
interesting to reason about the set of traces that lead to it. We thus define the collecting semantics
of our analyses:

Definition 104. For any accessA ∈ Access , we note F (A) this set of traces that reachA. Formally,

F is defined as the least fixpoint solution of the following equation:

∀A′ ∈ Access , F (A′) = F0(A
′) ∪

⋃

(A,A′)∈E

{σ.A, σ ∈ F (A)}

where ∀A ∈ Access , F0(A) =

{
{ε} if A ∈ I

{} otherwise

Note that the existence of this least fixpoint is guaranteed by Tarski’s fixpoint theorem, 2Σ being a

complete la�ice and by the monotonicity of F : F 7→ λA′.F0(A
′) ∪

⋃

(A,A′)∈E

{σ.A, σ ∈ F (A)}.

As a consequence of the trace semantics used to define our concrete domain, the concrete
transformers takes accesses as parameters and not memory blocks. We thus overload the defini-
tion of the update function defined in Chapter 2.3 as follows:

∀q ∈ DLRU , ∀A ∈ Access , update(q, A) = update(q, blk(A))

�is function can then be li�ed to an arbitrary number of accesses.

update(q, σ) =

{
q if σ = ε

update(update(q, σ′), A) if σ = σ′.A

Similarly, all cache analyses mentioned in this thesis can be raised to the trace domain. We thus
have, noting q0 the entry cache state of the program:

γMay : DMay → P(Σ)

q̂May 7→ {σ ∈ Σ, ∀b ∈ Blocks , q(b) ≥ q̂May(b),where q = update(q0, σ)}

γEH : DEH → P(P(Σ))

(q̂EH , q̂Must) 7→ {T ⊆ γMust(q̂Must), ∀b ∈ Blocks , ∃σ ∈ T/q(b) ≤ q̂EH (b),where q = update(q0, σ)}

110

a

d

c

b

a

A5

A4

A3

A2

A1

[{A1}a, {A2}b, {A3}c, {A4}d]

[{}a, {}b, {A3}c, {}d]
[{}a, {}b, {}c, {}d]

[{A1}a, {}b, {}c, {}d]
[{}a, {}b, {}c, {}d]

E

Figure 5.6 – Loading access location

5.3.2 Our vulnerability analysis

An illustrative example

Our analysis aims at finding program points at which one may distinguish two execution paths
from the hit/miss to the instruction cache. Figure 5.6 illustrates such a case. In this example, we
consider a 2-ways fully-associative cache where a,b,c and d are the instruction memory blocks.
At the execution point A5 the access to instructions of block a is a hit when the le� branch is
previously executed and a miss when the execution comes from the right branch. Access A5

is thus a Definitely Unknown access and a potential vulnerability. �en, our analysis aims at
identifying the previous access that make A5 a hit. �us, our analysis keeps the previous access
localization (An) for each block. On Figure 5.6, this previous accesses is given in brackets. For
instance, before program point A5 the previous access at block a is at point A1.

In summary, the access to a at point A5 is identified as Definitely Unknown and the analysis of
the previous accesses leading to a hit at A5 tells us that A1 is the only loading location possible.
With this information a developer may identify that the branch condition value may leak due to
cache instruction.

�e Definitely Unknown analysis is defined in Section 4.1. We thus focus on identifying where
are the previous accesses in case the current access is a hit.

Our vulnerability analysis

As mentioned above, our analysis tries to locate the last access(es) that loaded a block, leading to
a potential vulnerability.

Definition 105. �is last access to a block b ∈ Blocks in a sequence σ ∈ Σ is formally defined by:

LastAccess(b, σ) = {σi, blk(σi) = b ∧ ∀j > i, blk(σj) 6= b}

�e set LastAccess(b, σ) is either a singleton containing the last access to b in the sequence σ, or the
empty set in case the sequence σ does not contain any access to b.

Because of the potentially high number of blocks a program might contain, tracking the last
access for each block might be expensive. Instead, one can restrict the blocks to track to those that

111

are still cached. However, because it is not always statically known whether a block is still in the
cache or not, we propose one over-approximation and one under-approximation of last accesses
of blocks.

Over-approximating analysis �e first step to over-approximate the set of last access loca-
tions a block might have been loaded is to over-approximate the set of blocks that might have
been loaded. �is is what the May analysis achieve: any block in the may cache might have been
loaded previously. �e second step is then for each of these blocks to over-approximate the set of
locations it might have been loaded from.

Definition 106. �e domain of our analysis is then the product D = DMay × (Blocks →
P(Access)), and the concretization γ : D → P(Σ) is defined by:

γ(q̂May , q) = {σ ∈ Σ, ∀b ∈ Blocks ,q(b) ≥ q̂May(b)∧

q(b) < k ⇒ LastAccess(b, σ) ⊆ q(b)

, where q = update(q0, σ)}

Definition 107. �e update function update tracks for each block the last access to it, until one can

ensure the block is not cached anymore.

update((q̂May , q), A) = (q̂′May , q
′)

where q̂′May = updateMay(q̂May , blk(A))

and ∀b, q′(b) =

{A} if b = blk(A)

{} if q̂′May(b) = k

q(b) otherwise

�e join operator used in this new domain is simply the may join operator for the may part,
and the set union for the last access tracking part.

Figure 5.7 gives an example of how our analysis behaves. �e may cache states are shown on
the le� of the figure, whereas the potential last accesses to a are shown on the right. Once accessed,
a always remains in the may cache, the potential accesses to a is thus never reset. When reaching
a new access to a, the analysis shows that the previous last access (if there was a previous access
at all) is the access A1. One can thus deduce that the if/then/else that can leaks data is the first
one, and not the second.

Under-approximating analysis In addition to the above over-approximating analysis, we
propose another analysis that computes safe under-approximation of the locations of accesses
that might lead to vulnerabilities. Similarly to its over-approximating counterpart, it is based on
an existing analysis that tracks the cache content. �is analysis we rely on is the Existing-Hit
analysis, that is able to guarantee that some accesses are hits for at least one path.

Definition 108. �e domain for the under-approximation is thus the product D = DEH ×
(Blocks → P(Access)), and the associated concretization γ : D → P(Σ) is defined by:

γ(q̂EH , q) = {T ⊆ Σ, ∀b ∈ Blocks , ∀A ∈ Access , ∃σ ∈ T/q(b) ≤ q̂EH (b)∧

(A ∈ q(b)⇒ LastAccess(b, σ) = {A})

, where q = update(q0, σ)}

Intuitively, this concretization gives the following guarantees:

112

ba A1

c

ed

aA2[a, {d, e}, c, b]
[{d, e}, c, {a, b},⊥]

[d, c, {a, b},⊥,⊥]/[e, c, {a, b},⊥]

[c, {a, b},⊥,⊥]
[{a, b},⊥,⊥]

[a,⊥,⊥,⊥]/[b,⊥,⊥,⊥]

[⊥,⊥,⊥,⊥]

{A2}a

{A1}a

{A1}a/{A1}a

{A1}a

{A1}a

{A1}a/{}a

{}a

Figure 5.7 – Over-approximating analysis

• For any set of traces in the concretization and any block, there is at least one trace that leads

to an age younger in the concrete state than predicted by the Exist-Hit analysis. �us, if the

Exist-Hit part of the analysis predicts the existence of a hit, there is indeed a concrete trace that

leads to a hit.

• Moreover, in this case where the Exist-Hit analysis predicts a hit, for any access A in q(b) there
is such a trace leading to hit where A is the last access to b before the hit.

Definition 109. �e update function for this under-approximating analysis is then defined by:

update((q̂EH , q), A) = (q̂′EH , q
′)

where q̂′EH = updateEH(q̂EH , blk(A))

and ∀b, q′(b) =

{A} if b = blk(A)

{} if q̂′EH (b) = k

q(b) otherwise

Definition 110. We define the following join operator for the under-approximating analysis:

(qEH1, q1) ⊔ (qEH2, q2) = (qEH1 ⊔EH qEH2, q
′)

where ∀b ∈ Blocks , q′(b) =

q
1
(b) if qEH1(b) < qEH2(b)

q
2
(b) if qEH1(b) > qEH2(b)

q
1
(b) ∪ q

2
(b) if qEH1(b) = qEH2(b)

One can notice that this join operator does not simply compute the union of last accessed
sets. Indeed, this would be incorrect. �e Existing-Hit analysis keeps the best upper-bound pos-
sible on blocks age (i.e. the lowest upper-bound). Several accesses a�er a join, one of the joined
upper-bound might reach the associativity k, and the corresponding under-approximated set of
accesses should be discarded. However, because the Exist-Hit join keep the minimum of available
upper-bound, this discarding operation might be delayed, leading to an invalid set of last accesses.
In other words, the Exist-Hit analysis join might overwrite the upper-bound associated to a set

113

ba A1

c

ed

aA2[a, {d, e}, c, b]
[{d, e}, c, {a, b},⊥]

[d, c, {a, b},⊥,⊥]/[e, c, {a, b},⊥]

[c, {a, b},⊥,⊥]
[{a, b},⊥,⊥]

[a,⊥,⊥,⊥]/[b,⊥,⊥,⊥]

[⊥,⊥,⊥,⊥]

{A2}a

{A1}a

{A1}a/{A1}a

{A1}a

{A1}a

{A1}a/{}a

{}a

Figure 5.8 – Under-approximating analysis

of accesses, and one should keep this set of accesses only if the associated upper-bound is the
minimal one, hence the above definition.

Figure 5.8 shows an example of under-approximation. By performing the analysis described
in this section, one is able to tell that there exists at least one path on which the last access to a is
hit, and that A1 is one of the accesses where a could have been loaded.

5.3.3 Analyses soundness

�is section contains all the proofs of soundness of the described analyses.

Lemma 111. �e update function is safe, i.e. it conserves over-approximations:

∀(q̂May , q) ∈ D , ∀A ∈ Access , {σ.A, σ ∈ γ(q̂May , q)} ⊆ γ(update((q̂May , q), A))

Proof. Let (q̂May , q) in D , A in Access and σ in γ(q̂May , q). We want to show that σ.A ∈
γ(update((q̂May , q), A)). �is is equivalent to show that, for any b in Blocks , q′(b) ≥ q̂′May(b)
and q′(b) < k ⇒ LastAccess(b, σ.A) ⊆ q′(b), where q′ = update(q, A), q = update(q0, σ) and
q̂′May = updateMay(q̂May , b).

�e first part q′(b) ≥ q̂′May(b), immediately follows from the correctness of the May analysis.
We thus focus on the second part, the implication q′(b) < k ⇒ LastAccess(b, σ.A) ⊆ q′(b). We
know from the definition of σ that q(b) < k ⇒ LastAccess(b, σ.A) ⊆ q′(b).

We then proceed by cases distinction:

• If q′(b) = k, then the implication is trivially true because its le�-hand side is false.

• If q′(b) < k and b = blk(A), then: LastAccess(b, σ.A) = {A}. Moreover q′(b) =
update(q, A)(b) = {A}. �us LastAccess(b, σ.A) ⊆ q′(b), proving that the implication
holds.

• Finally, if q′(b) < k and b 6= blk(A), we have: Necessarily, q(b) < k because q′(b) < k
and b 6= blk(A). �us, LastAccess(b, σ) ⊆ q(b). Moreover q̂′May(b) ≤ q′(b) < k, and thus
q′(b) = q(b). �us, LastAccess(b, σ.A) = LastAccess(b, σ) ⊆ q(b) = q′(b), proving the
desired implication.

114

Lemma 112. �e join operator (point-wise union of sets) ⊔ is safe, i.e.

∀((qMay1, q1), (qMay2, q2)) ∈ D
2
, γ(qMay1, q1) ∪ γ(qMay2, q2) ⊆ γ(qMay1 ⊔May qMay2, q1⊔q2)

Proof. Let ((qMay1, q1), (qMay2, q2)) in D
2
. We show (without loss of generality), that

γ(qMay1, q1) ⊆ γ(qMay1 ⊔May qMay2, q1⊔q2).
Let σ ∈ γ(qMay1, q1) and b ∈ Blocks .
We have q(b) ≥ qMay1(b) and q(b) < k ⇒ LastAccess(b, σ) ⊆ q1(b), where q = update(q0, σ).

We want to prove that q(b) ≥ (qMay1 ⊔May qMay2)(b) and q(b) < k ⇒ LastAccess(b, σ) ⊆
q1(b) ∪ q2(b).

�e first part follows from the soundness of the may analysis, whereas the second part trivially
holds, by the inclusion q1(b) ⊆ q1(b) ∪ q2(b).

�eorem 113. For any trace σ reaching an access A, σ belongs to the concretization of the abstract

value (q̂May , q) associated to A.

Proof. �is is a direct consequence of the two preceding lemmas applied to the fixpoint equation
of the concrete and abstract collecting semantics.

Lemma 114. �e update function is safe, i.e. it conserves the last access sets under-approximations:

∀(q̂EH , q) ∈ D , ∀A ∈ Access , {{σ.A, σ ∈ T}, T ∈ γ(q̂EH , q)} ⊆ γ(update((q̂EH , q), A))

Proof. Let (q̂EH , q) in D , A in Access and T in γ(q̂EH , q).
We note T ′ = {σ.A, σ ∈ T} and want to show that T ′ ∈ γ(q̂′EH , q

′)}, where (q̂′EH , q
′) =

update(q̂EH , q), A). Let b ∈ Blocks and A′ ∈ Access . We then want to show that there exists σ′

in T ′ such that:

• q′(b) ≤ q̂′EH (b)

• A′ ∈ q′(b)⇒ LastAccess(b, σ′) = {A′}

where q′ = update(q0, σ
′).

Let σ ∈ T such that q(b) ≤ q̂EH (b) (with q = update(q0, σ)) and A′ ∈ q(b) ⇒
LastAccess(b, σ) = {A′}. Such σ exists by definition of T .

Our candidate σ′ is then σ.A.
q′(b) ≤ q̂′EH (b) is ensured by the correctness of the Exist-Hit analysis.

• If b = blk(A), then q′(b) = {A}. �us, A′ ∈ q′(b) implies A′ = A and LastAccess(b, σ′) =
LastAccess(b, σ.A) = {A′}

• Else, b 6= blk(A). Suppose A′ ∈ q′(b), q′(b) 6= {} and b 6= blk(A), thus q′(b) = q(b).
We then have A′ ∈ q(b), and LastAccess(b, σ) = {A′}. Finally, LastAccess(b, σ.A) =
LastAccess(b, σ) = {A′} as desired.

Lemma 115. �e join operator⊔ is safe, i.e.

∀((qEH1, q1), (qEH2, q2)) ∈ D2, ∀T1 ∈ γ(qEH1, q1), ∀T2 ∈ γ(qEH2, q2), T1∪T2 ∈ γ(qEH1⊔EHqEH2, q1⊔q2)

115

Proof. Let ((qEH1, q1), (qEH2, q2)) in D2, T1 in γ(qEH1, q1) amd T2 in γ(qEH2, q2).
We note T3 = T1 ∪ T2, and we want to show that T3 ∈ γ(qEH3, q3), where qEH3 = qEH1 ⊔EH

qEH2 and q3 = q
1
⊔q

2
.

Let b ∈ Blocks and A ∈ Access .
We then proceed by case distinction:

• If qEH1(b) = qEH2(b), then: qEH3(b) = qEH1(b) = qEH2(b) and q3(b) = q
1
(b) ∪ q

2
(b).

SupposeA ∈ q
3
(b). We assume, without loss of generality, thatA ∈ q

1
(b). �en, there exist

σ ∈ T1 such that:

– q(b) ≤ qEH1(b)

– LastAccess(b, σ) = {A}

, where q = update(q0, σ).

Because σ ∈ T3, and by equality of qEH1(b) and qEH3(b), we have T3 ∈ γ(qEH3, q3)

• If qEH1(b) 6= qEH2(b), we suppose without loss of generality that qEH1(b) < qEH2(b). �en:
qEH3(b) = qEH1(b) and q3(b) = q

1
(b). �us, A ∈ q

3
(b) ⇒ A ∈ q

1
(b) and the remaining of

the proof is identical to the preceding case.

�eorem 116. Let T denote the set of traces reaching an access A, then T belongs to the concretiza-

tion of the abstract value (q̂EH , q) associated to access A.

Proof. �is is a direct consequence of the two preceding lemmas applied to the fixpoint equation
of the concrete and abstract collecting semantics.

Conclusion

Some vulnerabilities in program are due to the ability of an a�acker to distinguish between cache
hits and cachemisses. OurDefinitely Unknown analysis can be used to spot somememory accesses
potentially leaking information in this se�ing. However, deducing what information is leaking
from the results of the Definitely Unknown analysis is difficult. We thus designed two analyses to
help a developer locating the information leak. �ese analyses approximate the set of accesses
that lead to the classification as Definitely Unknown analysis.

Usually, side channels leakage are prevented by relying on constant programming, i.e. by
forbidding any dependency between memory access or control dependency, and secret data. �e
compliance to the security policy can then be checked by automatic tools. Our approach is a first
step toward the weakening the these constraints. Indeed, instead of assuming that all dependency
between control and secret data lead to vulnerabilities, we propose a finer grain approach to spot
vulnerabilities more precisely. An interesting approach would be to provide the results of our
analysis to the automatic tools checking the compliance to the security policy, so that it knows
some potential leakage are spurious.

116

Chapter 6

Conclusion

Modern processors use cache memories to speed up computation. By storing frequently accessed
memory blocks into a fast memory closer to the core than the main memory, caches reduce the
average delay to retrieve information from memory. However, by supplying a second (or more)
area to retrieve memory blocks, one introduces a variability in the delay of memory accesses. In
some cases, this variability is undesirable. �is is the case, for instance, in the domain of critical
real-time systems which require to be predictable to pass certification. Another example is the
domain of security, where this variability can be used by an a�acker to obtain secret information
from the program execution. In both cases, one is interested in statically obtaining information
about the program behavior relatively to the cache. �is is what cache analyses achieve.

In this thesis, we focus mainly on cache analyses that classify memory accesses into the one
that result in cache hits, and the one that result in cache misses. We focus on the analysis of L1
instruction caches using the Least Recently Used policy. More precisely, our goal is to classify
memory accesses into three categories:

• accesses that always result in a cache hit.

• accesses that always result in a cache miss.

• accesses that can result in a hit or a miss depending on the execution path.

Knowing whether a given access results in a hit or a miss being undecidable in general, we assume
that all paths in the programCFG are feasible. By doing so, we overapproximate the set of possible
program behavior and are thus guaranteed to obtain a safe classification of memory accesses.

As a first contribution, this thesis explores the complexity of problems linked to cache analysis
under this assumption. More precisely, we look at the theoretical complexity of finding path
leading to a hit (or a miss) depending on the cache replacement policy. We show that LRU leads
to NP-hard classification problems, while other common replacement policies, namely PLRU, FIFO
and NMRU, lead to PSPACE-hard classification problems. �is tends to confirm the idea that LRU
is the easiest replacement policy to analyze.

In addition to this assumption, some existing analyses sometimes classify a memory access as
Unknown, meaning it can belong to any of the three categories mentioned. More precisely, the
Must (respectively May) analysis respectively computes a safe under-approximation of the set of
accesses always resulting in a hit (respectively a miss). �us, a�er performing these analyses, one
does not have any information about the accesses that do not belong to these under-approximating
set of accesses. Our second contribution is thus an analysis called Definitely Unknown that, sim-
ilarly to May and Must analyses, provides a safe under-approximation of the set of accesses that
can result both in a hit or a miss. By using this analysis, one thus reduce the uncertainty about

117

the accesses that remained unclassified a�er the May and Must analyses. �e Definitely Unknown
analysis asserts the existence of paths leading to a hit and a miss, and that the classification as
Unknown by the May and Must analyses did not come from a coarse approximation. Our exper-
iments show that using this analysis, we are able to classify 98% of the remaining accesses as
Definitely Unknown.

Our third contribution of this thesis is an exact analysis (relatively to themodel where all paths
are feasible), that is able to classify all the remainingUnknown accesses into one of theAlways-Hit,
Always-Miss or Definitely Unknown category, by using a model-checker. �is approach consists
in encoding the program and the cache in a model-checker, and to encode the possibility of a hit
or a miss into a logic formula. �e novelty of this approach is that it relies on a technique called
block focusing that is able to abstract cache state relatively to a given memory block. By doing so,
the cache state representation obtained is smaller because it does not keep information about the
blocks accessed before the block we are interested in. �e resulting set of blocks that are younger
than the block we focus on is called the younger set associated to the focus block. However,
this abstraction is still able to provide the exact age of the block we focus on, and enables us to
exactly classify it among the three categories Always-Hit, Always-Miss and Definitely Unknown.
Due to this precision improvement, this exact analysis increases the number of blocks classified as
Always-Hit or Always-Miss to 18.2% (where the May and Must analyses alone only classify 16.8%
of the accesses).

Our next contribution is an improved exact analysis also based on block focusing, that per-
forms additional pruning of the state space by removing some younger sets that are not minimal
or maximal. Indeed, one can show that one do not lose precision by removing these younger
sets, and that the resulting analysis still provides an exact classification. To compactly represent
the antichain of maximal (or minimal) younger set and efficiently prune them when needed, we
propose an implementation relying on Zero-suppressed Decision Diagrams. By doing so, we ob-
tain an analysis that is one order of magnitude faster (19.5 times faster in average, and up to 300
times faster) than the model-checking approach, and that is comparable to the May and Must
approaches while providing an exact classification of accesses.

�is thesis also investigates two applications of our exact analysis, one in the framework of
WCET computation, the other one in the domain of security. In the case of WCET computation,
we study the relation between cache and pipeline analyses. Indeed, a pipeline analysis relying on
a coarse classification of memory accesses would have to treat both hit and miss cases, resulting
in the pipeline state space blow-up. Our experiments show that coupling our exact cache analysis
in the OTAWA pipeline analysis can result in a reduction by 70% of the global analysis time
(cache+WCET), corresponding to a gain of 10 hours for some benchmark. However, providing
an exact classification to the pipeline analysis does not seem to highly impact WCET estimation
itself. First, most of the unknown accesses are refined as definitely unknown. In these cases, both
cases must still be considered. It is also unlikely that refining Unknown accesses to Always-Miss

leads to be�er WCET. �is only occurs in case of timing anomalies. Finally, the access refined
that actually lead to a shorter execution time of a basic block might not be located on the critical
path. In the domain of security, we propose to use the Definitely Unknown analysis to spot some
accesses potentially leaking information. In addition, to ease the task of confirming or denying the
existence of a leak, we provide two cache analyses that track the set of possible loading location
of the block accessed at the leaking point (that would indicate the executed path). One of them
provides a safe over-approximation of the loading location based on the May analysis, the other
one provides a safe under-approximation based on the Exist-Hit analysis.

To conclude, this thesis explores the feasibility of optimally precise cache analyses under the
hypothesis that all program paths are feasible. While the classification problems are shown to

118

have high complexity in theory, we provide analyses that are efficient in practice for LRU L1
instruction caches. One can thus hope that analyzing other kind of caches (data caches, other
replacement policies, etc.) or micro-architectural optimizations (pipeline, branch predictors, etc.)
can be done efficiently on practical examples.

6.1 Future Work

�is section gives some ideas that could be used to improve the current state of our analyses.
Mainly, three possibilities are considered:

• Partially take into account the program semantics to avoid covering some infeasible paths
that would lead to precision loss.

• Extend our analyses to cover data caches. Depending on the writing policy, conserving the
exactness of our approach can be challenging.

• Extend our work to other replacement policies. Because no abstraction are currently known
to perform exact analyses, we propose two approaches: either drop the exactness require-
ment for efficiency and use abstractions that can lose precision, or stick to the concrete
semantics using hash consing (as done when using the ZDD-based approach) to compactly
represent set of states.

6.1.1 Program Semantics

�is thesis extensively uses the assumption that all execution paths in the CFG are feasible. How-
ever, this is not the case in many real programs. �is section describes some ideas that could be
used to partially fill the gap between the real program containing infeasible paths and its ideal
model where all paths are feasible.

Encoding infeasible paths in the Model-Checker

First, we propose an a�empt1 to encode some infeasible paths into the model checker. More
precisely, we focus on encoding infeasible paths that result from mutually exclusive tests, and
that do not contain cycles.

Figure 6.1a is an example of program containing an infeasible path: the second condition can
not be true if the first is false. �is impossible path is highlighted in red on the program CFG
represented in Figure 6.1b. Assuming that all paths are feasible, a cache analysis would classify
the second access to b as Definitely Unknown2, whereas this access always leads to a miss on real
execution. Indeed, the only path leading to a hit is the infeasible pathBB0−BB1−BB3−BB4−
BB5.

For the sake of simplicity, we only consider one memory access per basic block. We then note
state(x) the predicate which is true when the current basic block being executed is x, andmiss(y)
a predicate which is true when the current cache state does not contain the block y. Using these
notations, the LTL formula used to check that the access to b always misses in basic block BB4

of our example is the following:

A[G(state(BB4)⇒ miss(b))]

1�is work was done in collaboration with Florian Barrois.
2assuming a cache of associativity greater than 2.

119

int x = rand();

if(x > 10) {
… // x unchanged

}
else {

… // x unchanged

}
if(x > 20) {

… // x unchanged

}

(a) Source code

l-block a

BB0

l-block b

BB1

l-block c

BB2

l-block d

BB3

l-block b

BB4

BB5

x ≤ 10 x > 10

x > 20

x ≤ 20

(b) Control Flow Graph

Figure 6.1 – Example of program containing infeasible path

�is formula can be read as follows: “For any path π, and any position i in π, being in basic
block BB4 implies that block b is not cached”. In our example, this formula is obviously false due
to the infeasible path.

To model the fact that this path is infeasible, we add some constraints about the path. In our
example, the infeasible path can be modelled by the subformula F (state(BB1)∧F (state(BB4)))
which can be read as “π goes through BB1 and, from there, goes through BB4”.

�e modified formula given to the model checker is thus the following:

[G(state(BB4)⇒ miss(b))︸ ︷︷ ︸
Always-Miss

∨ (F (state(BB1) ∧ F (state(BB4))))︸ ︷︷ ︸
infeasible path

]

�is formula can be read as “For any path π, either π leads to amiss atBB4, or π is not feasible”.
For example 6.1b, the model-checker asserts that this formula is always true. �is methods can
be extended to any set of infeasible paths as soon as they can be unambiguously expressed by a
LTL formula. However, finding such a formula can be difficult in some situation. For instance, we
do not have any automatic method to encode mutually exclusive path nested in loops.

Treating function calls In addition to mutually exclusive conditions, treating function calls
is interesting, because they can be the source of infeasible paths. Gathering all functions of a
program in a single CFG can be done in several ways:

• One way to gather the CFGs of all functions consists in inlining function call. Every time a
function is called, the CFG of the called function is duplicated and several edges are added
to connect the calling block in the callee to the entry block of the caller, and from the exit
block of the callee to the return block of the caller. �is method is simple and does not
create spurious paths in the program. However, it can not handle recursive functions and
duplicating several times the same functions can lead to a huge CFG.

120

• Another possibility is to use one single copy of each function. As previously, edges are added
between calling block and entry blocks, and exit points and return blocks. �is method
creates a more compact graph, but has the drawback of adding spurious path in the program
model. Indeed, the program flow can go from a caller to a callee, reach the callee exit and
return to another potential caller instead of the original one. In the following, we show how
these spurious paths can be removed in the case of non-recursive function.

Consider source code of Listing 6.2a, which corresponding CFG is given on Figure 6.2b. Func-
tion main is formed by basic blocks BB0 to BB6, whereas f is formed by basic blocks BB7 and
BB8. Dashed arrows represent function calls and associate a call site to its return block. �ese
arrows cannot be taken, and do not even exist in the real implementation of the program model.
As previously, the red path symbolizes an infeasible path.

void main()

{
int x = rand();

if(x > 10) {
g();

}
if(x < 0) {

g();

}
}

void g()

{
}

(a) Source code

l-block a

BB0

l-block b

BB1

l-block c

BB2

l-block d

BB3

l-block e

BB4

l-block f

BB5

l-block g

BB6

l-block x

BB7

l-block x

BB8

x > 10

x < 0

call BB1

return BB2
call BB4

return BB5

main g

(b) Control Flow Graph

Figure 6.2 – Example of program containing infeasible path

Because of the exclusive conditions, g can be called only once. �us, the access to block x
in basic block BB7 is always a miss. However, the spurious path BB0 − BB3 − BB4 − BB7 −
BB8 −BB2 −BB3 −BB4 −BB7 −BB8 −BB5 −BB6 leads to a hit to block x on the second

121

execution of basic block BB7. To avoid this problem, we force paths going through a call site to
exit the callee by the associated return block. In our example, if one goes from basic block BB4

to basic block BB7, it is not possible to enter again the same function until return point BB5 is
met. One thus obtain the following formula:

G((state(BB4) ∧X(state(BB7)))︸ ︷︷ ︸
function call

⇒ X(X((¬state(BB7))Ustate(BB5)︸ ︷︷ ︸
forbids entering the same function again

)))

�e double “next” operator is necessary to delay the restriction to enter the function a�er it is
entered the first time. �is constraint can be generalized to any function call:

G((state(call site) ∧X(state(callee entry)))︸ ︷︷ ︸
function call

⇒ X(X((¬state(callee entry))Ustate(return point)︸ ︷︷ ︸
forbids entering the same function again

)))

One such formula can be added for every calling edge in the program. In our example, the formula
checked to assert x is Always-Miss in basic block BB7 is the following:

A[G(state(BB7)⇒ miss(x))

∨ F (state(BB1) ∧ F (state(BB4)))

∨ ¬G((state(BB1) ∧X(state(BB7)))⇒ X(X((¬state(BB7))Ustate(BB2))))

∨ ¬G((state(BB4) ∧X(state(BB7)))⇒ X(X((¬state(BB7))Ustate(BB5))))]

Deciding if a path is feasible is an undecidable problem. �us, one can not find all infeasible
paths in a program and encode them in the model checker. However, the encoding above allows to
systematically treat functions calls. Moreover, it is expressive enough to encode infeasible paths
that can be described by a sequence of basic blocks they go through (this however requires that
the basic blocks are not repeated). One can thus hope to improve the cache analysis precision
using these methods. However, the range of situation that can be handled by this approach is
currently limited. Indeed, the problem of recursive function calls3 and mutually exclusive tests
nested in loops are still open questions.

Improving efficiency of the abstract interpretation cache analyses

In addition to the model checking method explained above, this section describes some methods
that can be used to improve the precision of the analysis presented in Section 4.3. Mainly, we
describe some abstract interpretation techniques that can be use to prune the set of traces covered
by an abstract interpretation analyzer.

Trace partitioning Trace Partitioning [MR05] is a method to improve the precision of abstract
interpretation analyses. Usually, analyses by abstract interpretation compute one abstract value
for each basic block of a program. �is abstract value summarizes all the program traces reaching
the associated basic block. �e main idea of trace partitioning is to compute several abstract
values instead of one, each of them summarizing a set of program traces. By spli�ing (or more
precisely, partitioning) the set of traces into several parts, one hopes to obtain a more precise

3Note that recursive function calls are usually not a problem in critical systems, because developpers avoid them
and compilers try to remove them.

122

value for each subset. Of course, the precision versus cost ratio highly depends on how the set of
traces is partitioned.

A common refinement consists in constructing the partition of program traces based on the
control flow. For instance, one uses an abstract value to describe the program traces going through
the le� branch of a test and a second abstract value to describe the program traces going through
the right branch. Similarly, one can use this method to distinguish the first iteration of a loop from
the others. To improve efficiency, set of traces can be merged later one during the analysis. For
example, one could decide that distinguishing between the two branches of a test is not relevant
one or two basic blocks a�er the join location. �e efficiency and precision of the analysis is then
highly dependent on the heuristics used to merge partitions. For instance, in the case of cache
analyses, one could use the predictability metrics described in [Rei09] as heuristics. In the case of
LRU caches, two concrete cache states converge a�er k different accesses. One could thus wait k
different accesses a�er the join location to merge the associated set of traces.

Context-sensitive abstraction As for the model-checking approach, there are different ways
to manage function calls when performing abstract interpretation. �e first method simply con-
sists in analyzing a function with the correct input value each time a function call is met. �is
is roughly equivalent to inline the function by duplicating its body. If a function is called twice,
it is then analyzed twice, with a potentially different abstract value at the basic block entry. An
other possibility is to merge all the functions into one CFG as done for building the model checker
programmodel in Section 6.1.1, and to analyze it as a single function. �is is the current approach
used in our implementation in OTAWA . �is then creates some infeasible paths from some call
sites to wrong return points. Similarly to the model checker approach, one would like to cut these
impossible flows. One possibility to do this is to use an abstraction of the call-stack in addition
the cache abstraction. Given an abstract domainD# and the corresponding concretization γ, one
can build a new domain D#

Context = Context → D# and concretization γ#Context by associating
one abstract value inD# for every possible calling context. �e concretization is then defined by:

γ#Context(f) =
⋃

c∈Context

{γ#(f(c)) ∩ γContext(c)}

where γContext(c) is the set of traces that are compatible with the context c. �is is a form of trace-
partitioning. One possible choice for Context is to use a call-string. �is consists in stacking
tokens associated to call site when a function call is met, and to unstack it when the associated
return point is reached. �e concretization γContext(c) is then the set of traces that can lead to
the context c. Note that the formulation above allows unbounded call string, which leads to the
existence of infinite ascending chain in the domain D#

Context . One usual solution to ensure the
analysis termination is thus to bound the length of the call string.

Finally, one last solution4 can be considered to treat function calls, that consists in building a
summary for each function. �e idea is to analyze each function only once5 to build a summary
of its behavior. �is summary is then used when a call to the associated function is met. Using the
value abstracting the cache state at the entry of the function and the summary of the function,
one computes an abstraction of the output cache state without analyzing the function again.

In the case of our exact analysis, this approach is worth considering. In what follow we focus
on the case of the Must exact analysis. Given a block a to focus on, one can build the summary of
a function by analyzing it starting from an empty younger set. First consider the case of Figure 6.3

4�is approach is the result of a joint work with Jan Reineke.
5�is assumes that the analyzed function are not recursively called.

123

where a is not accessed in the summarized function. �en, the final abstract value obtained rep-
resents the set of maximal sets of blocks that the function can access. For instance, if one obtain
the abstract {{b}, {c, d}}, we know that for any paths in the function, the set of blocks met is a
subset of {b} or {c, d}. �is summary can then be combined with an abstract value represent-
ing the cache state at the entry of the function. For example, if the cache state is represented
by the set {{d}, {c, e}}, a�er returning from the function, the cache state can be abstracted by
{{b, d}, {b, c, e}, {c, d, e}}. From the point of view of the ZDDs, the composition of an abstract
value with the summary is done by computing the dot product of the two ZDDs and pruning by
removing non-maximal elements.

b
c

d

call

return

d
c

e

a

summary:
{{b}, {c, d}}

summary:
{{d}, {c, e}}

return abstract value:
{{b, d}, {b, c, e}, {c, d, e}}

Figure 6.3 – Composing function summary

Consider now the case where a can be accessed in the function to summarize. All the paths
from one access to a to the end of the function can be abstracted as usual using a ZDD. However,
this ZDD should not be composedwith the input value of the function. Indeed, all the blocks at the
entry of the function where accessed before executing the function and, thus, before accessing a.
As a consequence, one has tomaintain two different abstract valueswhen summarizing a function.
One is used as long as no a is encountered and summarize all paths where a is not met. �e other
one is used to represent paths where an accessed to a has been met. On a function call, the first
one is composed with the input value by performing a dot product, and the result is joined as
usual with the second one.

6.1.2 Analyzing Data Caches

In addition to consider the program semantics to improve our analyses precision, it could be
interesting to cover the cases of data caches. As mentioned in Section 2.1, analyzing data caches
can implies running additional preliminary analyses than analyzing instruction caches, for two
reasons:

• First, the addresses of memory blocks accessed are less predictable than addresses of in-
structions, which are mainly executed in sequence. Contrarily, data memory accesses can
be muchmore complex, and require additional analyses, such as pointer aliasing or memory
shape, to allow precise cache analysis.

• Moreover, whereas instructions are only mostly read a�er the program is loaded, data
caches manage write accesses too. Analyzing them thus requires to take the write pol-
icy into account. �is section investigates how the analyses proposed in this thesis can be
adapted to treat different write policies in the case of L1 data caches.

124

Write allocate/No-write allocate Write allocate policies are easy to analyze. Indeed, write
accesses load/refresh memory blocks when accessed as read accesses. Any cache abstract domain
can thus be used without any modification, as reads and writes are handled identically.

On the other hand, no-write allocate policies require some modifications of the abstract do-
mains to be analyzed. In case of a write miss, the data are wri�en to the backing store and the
cache is not modified. In case of a write hit, the cache content is not modified (there is no need
to evict a block in case of hit), but the position of block might change, and other metadata are
updated. �us, in case one can not ensure that the block is cached (or not) when accessed, both
outcomes should be taken into account. One way to handle this is to update the cache state (as-
suming a hit) and join the result with its previous value (representing the miss case). However,
this can lead to precision loss. For instance, one loses the exactness of the block focusing based
analyses by doing so. Consider the younger set {x, y} when focusing on block a, and a write ac-
cess to z. �e younger set abstraction does not allow to distinguish a hit and miss. Indeed, {x, y}
can be concretize to [x, y, a, z] which results in a hit, or to [x, y, a, w] (with w 6= z) which result
in a miss.

Note that the no-write allocate caches are easy to handle in case of a FIFO replacement policy.
In case of a write-miss, the access is taken into account at the baking store level, and the cache
content is le� unmodified. In case of a write-hit, the cache is updated according to the FIFO policy,
and is thus not modified. In both cases, the cache is le� unmodified. �us, one can simply ignore
the write-accesses in case of FIFO replacement policy.

�e distinction of write-back and write-through caches is not relevant when analyzing the
content of L1 caches. Indeed, it only impacts the order of accesses to the baking store. How-
ever, knowing when the dirty blocks are evicted might be interesting when the cache is analyzed
together with the pipeline, which might benefit from the knowledge of cache delay. Similarly,
information about dirty bits is useful when analyzing higher level caches.

6.1.3 Reducing analysis cost

Simultaneous computation We have explained our exact analyses for classifying accesses to
each address a separately. It is also possible to simultaneously classify all addresses together,
by updating the abstractions (e.g. Cmin

l,a) for all a all together when updating the abstract state at
location l. By performing the analyses in parallel, one can hope that sharing of ZDDs between the
analyses of different blocks would reduce the memory consumption and analysis time. However,
one should be careful when sharing the cache containing the results of ZDDs operations, because
two update transformers (one focus on a block a, and the other focused on a block b) applied to the
same ZDD and block might give different results. Moreover, when this happens, and assuming
that caching is done with caution, both results should be cached, increasing the probability to
evict a useful result. �us, the problem of the efficiency of a parallel implementation is still an
open question.

On-demand backward analysis We have presented our exact analysis in a forward fashion:
to classify hits and misses to a, we compute at each location the collection of the set of addresses
found along path σ for all paths σ from the nearest preceding occurrences of a (truncated at
length k). We could formulate our analysis in a backward fashion: given a specific location A in
the cache conflict graph, we compute at each accessA′ the collection of the set of addresses found
along path σ for all paths σ from A′ to A. �is computation stops at other edges labeled with a,
start vertices, or when computing the special value ⊣. �en, an access A to block a may result in
a miss if and only if at least one value ⊣ was reached during this backward propagation, and it

125

may result in a hit if and only if at least one value different ⊣ was reached during this backward
propagation. �is backward analysis could then be called on demand when reaching an access
a coarse forward analysis is not able to classify. By starting the analysis from the problematic
access, we avoid analyzing all the remaining part of the code. In addition, by analyzing in the
program in the opposite direction, one can hope that the backward analysis will not meet the
join that caused the precision loss of the forward analysis, keeping the number of younger sets
to consider low.

6.1.4 Other replacement policies

�is thesis focuses on the analyses of the LRU replacement policy. In this section we explore the
possibilities of designing precise analyses for other replacement policies. Contrarily to the LRU
case, which analysis benefits from block focusing abstraction, we are not aware of any abstraction
that would permit to forget some information about the cache state but still lead to an exact
classification. In the following, we look at some other analyses that be used to classify accesses
in the presence of a non-LRU replacement policy.

An abstract interpretation analysis for PLRU A PLRU cache state can be formally described
by function that map a block to its position in the cache similarly to LRU cache state. As for the
LRU case, we use k for blocks that are not in the cache. In addition to the description of cache line,
describing a PLRU cache state requires to represent the associated tree bits. However, by flipping
any bit in this tree and swapping the two associated subtrees, one obtain an equivalent cache state
(i.e. a cache state that behaves exactly the same in terms of hit and miss for any access sequence).
For example, the PLRU cache states on Figure 6.4 are equivalent because one can be obtained
from the other one by swapping the innermost right subtree. To represent the equivalent class

a b c d

0

0 0

a b d c

0

0 1

Figure 6.4 – Two equivalent PLRU cache state

of a PLRU cache state, we choose the only cache state which tree bits are all set to 0 (like the le�
cache state of Figure 6.4). �is choice is arbitrary, but ensure the uniqueness of the representing
cache state (see [GR10]). �en, cache line 0 contains the next block to evict, whereas cache line
k − 1 contains the most recently accessed block. A possible concrete domain for describing a
PLRU cache state is thus DPLRU = Blocks → {0, . . . , k}.

Accessing a cache line might flip some tree bits of the current cache state. One then need
to swap subtrees to go back to an equivalent cache state where all tree bits are set to 0. When
operating on cache states where all tree bits are 0, an access can thus be seen as a permutation of
cache lines. We note πi the permutation induced by a hit on line i. �e concrete update for PLRU

126

caches can thus be formalized as follows:

update : DPLRU × Blocks → DPLRU

(q, b) 7→ q′

where ∀b′ ∈ Blocks , q′(b′) =

k − 1 if b = b′

πq(b)(q(b
′)) if b 6= b′ ∧ q(b) <k

0 if b 6= b′ ∧ q(b) = k ∧ q(b′) = 0

π0(q(b
′)) if b 6= b′ ∧ q(b) = k ∧ q(b′) 6= 0

�ese three cases correspond to the following behaviors:

• When a block is accessed, all the tree bits on its path are set to 1. It thus takes position k−1
in the canonical cache state representation.

• When the access results in a hit (i.e. q(b) < k), all blocks are permuted according to position
of the accessed block.

• When the access results in a miss (i.e. q(b) = k), the block at position 0 is evicted. All blocks
are permuted according to position of the accessed block.

• All other blocks are permuted exactly as if the evicted block was accessed.

In the following approach6, we abstract a set of concrete cache state by a function that, for
every memory block, associates the set of position it can occupy. �is defines the abstract domain
D#

PLRU = Blocks → P({0, . . . , k}) and the associated concretization function:

∀q# ∈ D#
PLRU , γPLRU(q

#) = {q ∈ DPLRU , ∀b ∈ Blocks , q(b) ∈ q#(b)}

One can then define the abstract transformer update# that modifies an abstract value q# when
accessing b as follows:

• For all position i in q#(b), suppose that b is in position i.

• Find all the position a block b′ can take when b is accessed and is in i.

• Merge all the obtained set for all value of i. �is defines the new value q#′(b′).

�e main advantage of this abstract transformer is that the potential positions of a block can
be encoded as a vector of bits, and that the permutation πi involved can be viewed as a matrix
multiplication applied to these vector of bits. Finally, merging abstract cache state can be done by
performing a bitwise logical or of bitvectors. Moreover, some reduction can be used to improve
the precision of this analysis. For example, when a b is temporary assumed to have position i,
i can be removed from the set of available position of all other blocks. By removing it, some
other blocks might end up with a single available position, which is then forced. �is new forced
position can in turn be removed from the set of available positions for other blocks, and so on.

127

type block = int

type plru tree = Node of plru tree ∗ plru tree

| Leaf of block

Figure 6.5 – Representing PLRU concrete cache

Exact analyses for other replacement policies Althoughwe are not aware of any abstraction
that would lead to an exact analysis for other replacement policies, one can investigate the usage
of hash consing methods similar to ZDD to compactly represent sets of concrete cache states. �e
remaining of this section describes how concrete cache states for some replacement policies can
be represented in a way that enable information sharing between similar concrete caches.

In the case of PLRU, a concrete cache state is represented as previously by its canonical cache
state. One can then encode the cache state as a tree, where information about tree bits is removed.
Listing 6.5 represents a possible implementation of this structure.

a b c d e f g h

0

0 0

0 0 0 0

0 1

0 1 0 1

0 1 0 1 0 1 0 1

e f g h c d b i

0

0 0

0 0 0 0

0 1

0 1 0 1

0 1 0 1 0 1 0 1
i

Figure 6.6 – PLRU subtree sharing

From this implementation, the hash-consing implementation is straight forward: one simply
allows only one copy of every subtree. Consider the PLRU cache state of Figure 6.6. A�er accessing
block i, one obtain the cache state on the right (a�er swapping subtrees to set all tree bits to 0),
which shares three separated subtrees with the original cache state.

Updating a concrete cache state is then done recursively as shown on Listing 6.7. A more effi-
cient implementation would benefit from hash consing by caching the result of functions contains
and update.

First-In First-Out policy Similarly to the PLRU replacement policy, FIFO cache states can be
represented by a recursive data structure that only is modified partially when a block is accessed.
�e main idea is to implement the concrete cache state as a table of cache lines, and a pointer
indicating which of the cache line will be evicted next. On a cache hit, the structure is not modified
as imposed by the FIFO policy. On a cache miss, the line given by the pointer is replaced by the
accessed block, and other cache lines are not modified. One possibility to optimize the sharing

6�is work was done in collaboration with Zhenyu Bai.

128

let rec contains cache block = match cache with

Node (le�, right) −> (contains le� block) || (contains right block)
| Leaf b −> b = block

let rec update cache accessed = match cache with

Node (le�, right) −>
if (contains right accessed) then

Node(le�, (update right accessed))

else

Node(right, (update le� accessed))

| Leaf b −> Leaf accessed

Figure 6.7 – Updating PLRU concrete cache

of cache lines between cache states consists in implementing the table of cache lines as a tree, as
shown on Figure 6.8.

a b c d a e c d
e

Figure 6.8 – FIFO subtree sharing

Again, by sharing the identical subtrees between cache states, one can hope to represent all
the concrete cache states reaching a program point in a compact way. Moreover, as in the PLRU
case, doing so enables the possibility of caching the result of contains, update and join functions.

One problem needs to be solved to implement these analyses, which is the representation of
unknown values. Indeed, if the entry cache state is unknown, one would need to represent all
possible combination of k memory blocks. �is is of course not possible in practice for program
of reasonable size. One thus need a way to represent unknown cache states and/or partially
unknown cache states.

Open �estion

Due to the always increasing need for performance, modern processors incorporate many hard-
ware optimizations. However, this growing complexity of the hardware ressources tend to make
the analysis of programs running on it harder. As a result, ensuring safety and security proper-
ties of these programs is more and more challenging. At one point, one will have to answer the
following question: what safety/security properties are we willing to lose to gain performance?

129

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[AFMW96] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Cache be-
havior prediction by abstract interpretation. In Radhia Cousot andDavid A. Schmidt,
editors, Static Analysis, �ird International Symposium, SAS’96, Aachen, Germany,

September 24-26, 1996, Proceedings, volume 1145 of Lecture Notes in Computer Sci-

ence, pages 52–66. Springer, 1996.

[AMM04] Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena Milenkovic. Performance
evaluation of cache replacement policies for the SPEC CPU2000 benchmark suite.
In Seong-Moo Yoo and Letha H. Etzkorn, editors, Proceedings of the 42nd Annual

Southeast Regional Conference, 2004, Huntsville, Alabama, USA, April 2-3, 2004, pages
267–272. ACM, 2004.

[AMR10] Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience analysis: tightening
the CRPD bound for set-associative caches. In Jaejin Lee and Bruce R. Childers, ed-
itors, Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on Languages, com-

pilers, and tools for embedded systems, LCTES 2010, Stockholm, Sweden, April 13-15,

2010, pages 153–162. ACM, 2010.

[AR14] Andreas Abel and Jan Reineke. Reverse engineering of cache replacement policies
in intel microprocessors and their evaluation. In 2014 IEEE International Symposium

on Performance Analysis of Systems and So�ware, ISPASS 2014, Monterey, CA, USA,

March 23-25, 2014, pages 141–142. IEEE Computer Society, 2014.

[BC08] Clément Ballabriga and Hugues Cassé. Improving the first-miss computation in set-
associative instruction caches. In 20th Euromicro Conference on Real-Time Systems,

ECRTS 2008, 2-4 July 2008, Prague, Czech Republic, Proceedings, pages 341–350. IEEE
Computer Society, 2008.

[BCRS10] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. OTAWA:
an open toolbox for adaptive WCET analysis. In Sang Lyul Min, Robert G. Pe�it IV,
Peter P. Puschner, and �eo Ungerer, editors, So�ware Technologies for Embedded

and Ubiquitous Systems - 8th IFIP WG 10.2 International Workshop, SEUS 2010, Waid-

hofen/Ybbs, Austria, October 13-15, 2010. Proceedings, volume 6399 of Lecture Notes in
Computer Science, pages 35–46. Springer, 2010.

[Ber05] Daniel J. Bernstein. Cache-timing a�acks on AES, 2005.

130

[Ber06] Christoph Berg. PLRU cache domino effects. In Frank Mueller, editor, 6th Interna-

tional Workshop onWorst-Case Execution Time Analysis (WCET’06), volume 4 ofOpe-
nAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2006. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[CBRZ01] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model
checking using satisfiability solving. Formal Methods in System Design, 19(1):7–34,
2001.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified la�ice model
for static analysis of programs by construction or approximation of fixpoints. In
Robert M. Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record
of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles,

California, USA, January 1977, pages 238–252. ACM, 1977.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In E. Allen Emerson and A. Prasad
Sistla, editors, Computer Aided Verification, 12th International Conference, CAV 2000,

Chicago, IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture Notes in Com-

puter Science, pages 154–169. Springer, 2000.

[CLS06] Anne Canteaut, Cédric Lauradoux, and André Seznec. Understanding cache a�acks.
Technical Report 5881, INRIA, April 2006.

[Cou78] Patrick Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes. �èse
d’état ès sciences mathématiques, Université scientifique et médicale de Grenoble,
Grenoble, France, March 1978.

[CR11] Sudipta Cha�opadhyay and Abhik Roychoudhury. Scalable and precise refinement
of cache timing analysis via model checking. In Proceedings of the 32nd IEEE Real-

Time Systems Symposium, RTSS 2011, Vienna, Austria, November 29 - December 2,

2011, pages 193–203. IEEE Computer Society, 2011.

[CR18] Sudipta Cha�opadhyay and Abhik Roychoudhury. Symbolic verification of cache
side-channel freedom. CoRR, abs/1807.04701, 2018.

[CS08] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In Proceedings of the

21st IEEE Computer Security Foundations Symposium CSF 2008, Pi�sburgh, Pennsyl-

vania, 23-25 June 2008, pages 51–65, 2008.

[DKMR15] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke. CacheAudit: A
Tool for the Static Analysis of Cache Side Channels. ACM Trans. Inf. Syst. Secur.,
18(1):1–32, 2015.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic to
synthesize synchronization skeletons. Sci. Comput. Program., 2(3):241–266, 1982.

[EH83] E. Allen Emerson and Joseph Y. Halpern. ”sometimes” and ”not never” revisited: On
branching versus linear time. In John R. Wright, Larry Landweber, Alan J. Demers,
and Tim Teitelbaum, editors, Conference Record of the Tenth Annual ACM Symposium

131

on Principles of Programming Languages, Austin, Texas, USA, January 1983, pages
127–140. ACM Press, 1983.

[FAH+16] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch,
Christine Rochange, Martin Schoeberl, Rasmus Bo Sorensen, Peter Wägemann, and
Simon Wegener. Taclebench: A benchmark collection to support worst-case exe-
cution time research. In Martin Schoeberl, editor, 16th International Workshop on

Worst-Case Execution Time Analysis, WCET 2016, July 5, 2016, Toulouse, France, vol-
ume 55 of OASICS, pages 2:1–2:10. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2016.

[GLBD14] David Griffin, Benjamin Lesage, Alan Burns, and Robert I. Davis. Lossy compres-
sion for worst-case execution time analysis of PLRU caches. In Mathieu Jan, Bel-
gacem Ben Hedia, Joël Goossens, and Claire Maiza, editors, 22nd International Con-
ference on Real-Time Networks and Systems, RTNS’14, Versaille, France, October 8-10,

2014, page 203. ACM, 2014.

[GLYY14] Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. WCET analysis with MRU
cache: Challenging LRU for predictability. ACM Trans. Embedded Comput. Syst.,
13(4s):123:1–123:26, 2014.

[GR09] Daniel Grund and Jan Reineke. Abstract interpretation of FIFO replacement. In
Jens Palsberg and Zhendong Su, editors, Static Analysis, 16th International Sympo-

sium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings, volume 5673 of
Lecture Notes in Computer Science, pages 120–136. Springer, 2009.

[GR10] Daniel Grund and Jan Reineke. Toward precise PLRU cache analysis. In Björn Lisper,
editor, 10th International Workshop on Worst-Case Execution Time Analysis, WCET

2010, July 6, 2010, Brussels, Belgium, volume 15 of OASICS, pages 23–35. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2010.

[GYLY13] Nan Guan, Xinping Yang, Mingsong Lv, andWang Yi. FIFO cache analysis forWCET
estimation: a quantitative approach. In Enrico Macii, editor, Design, Automation and

Test in Europe, DATE 13, Grenoble, France, March 18-22, 2013, pages 296–301. EDA
Consortium San Jose, CA, USA / ACM DL, 2013.

[HJR11] Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. Scope-aware data cache anal-
ysis for WCET estimation. In 17th IEEE Real-Time and Embedded Technology and

Applications Symposium, RTAS 2011, Chicago, Illinois, USA, 11-14 April 2011, pages
203–212. IEEE Computer Society, 2011.

[HLTW03a] Reinhold Heckmann, Marc Langenbach, Stephan �esing, and Reinhard Wilhelm.
�e influence of processor architecture on the design and the results of WCET tools.
Proceedings of the IEEE, 91(7):1038–1054, 2003.

[HLTW03b] Reinhold Heckmann, Marc Langenbach, Stephan �esing, and Reinhard Wilhelm.
�e influence of processor architecture on the design and the results of WCET tools.
Proceedings of the IEEE, 91(7):1038–1054, 2003.

[HP12] John L. Hennessy and David A. Pa�erson. Computer Architecture - A �antitative

Approach, 5th Edition. Morgan Kaufmann, 2012.

132

[Jr.78] Sheldon B. Akers Jr. Binary decision diagrams. IEEE Trans. Computers, 27(6):509–516,
1978.

[KCB+15] N. Kurd, M. Chowdhury, E. Burton, T. P. �omas, C. Mozak, B. Boswell, P. Mosa-
likanti, M. Neidengard, A. Deval, A. Khanna, N. Chowdhury, R. Rajwar, T. M.Wilson,
and R. Kumar. Haswell: A family of ia 22 nm processors. IEEE Journal of Solid-State

Circuits, 50(1):49–58, Jan 2015.

[Knu11] Donald E. Knuth. �e Art of Computer Programming: Combinatorial Algorithms,

part 1, volume 4A. Pearson, 2011.

[KSWH00] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel cryptanal-
ysis of product ciphers. J. Comput. Secur., 8(2,3):141–158, August 2000.

[LGY+10] Mingsong Lv, Nan Guan, Wang Yi, Qingxu Deng, and Ge Yu. Efficient instruction
cache analysis with model checking. RTAS, work-in-progress session, 2010.

[LS99] �omas Lundqvist and Per Stenström. Timing anomalies in dynamically scheduled
microprocessors. In 20th IEEE Real-Time Systems Symposium (RTSS), 1999.

[Lun02] �omas Lundqvist. A WCET Analysis Method for Pipelined Microprocessors with

Cache Memories. PhD thesis, Chalmers University of Technology, Gothenburg, Swe-
den, 2002.

[MAWF98] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand. Analysis of
loops. In Kai Koskimies, editor, Compiler Construction, 7th International Conference,

CC’98, Held as Part of the European Joint Conferences on the �eory and Practice of

So�ware, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume
1383 of Lecture Notes in Computer Science, pages 80–94. Springer, 1998.

[McM93] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993.

[Min93] Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial prob-
lems. In Alfred E. Dunlop, editor, Proceedings of the 30th Design Automation Confer-

ence. Dallas, Texas, USA, June 14-18, 1993., pages 272–277. ACM Press, 1993.

[Min01] Shin-ichi Minato. Zero-suppressed bdds and their applications. Int. J. on So�ware

Tools for Technology Transfer (STTT), 3(2):156–170, 2001.

[Mis14] Alan Mishchenko. An introduction to zero-suppressed binary decision diagrams. In
Tsutomu Sasao and Jon T. Butler, editors, Applications of Zero-Suppressed Decision

Diagrams. Morgan Claypool, 2014.

[MPH94] Adam Malamy, Rajiv N. Patel, and Norman M. Hayes. Methods and apparatus for
implementing a pseudo-lru cache memory replacement scheme with a locking fea-
ture. US patent 5,353,425, US Patent Office, October 1994.

[MR05] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation
based static analyzers. In Shmuel Sagiv, editor, Programming Languages and Sys-

tems, 14th European Symposium on Programming,ESOP 2005, Held as Part of the Joint

European Conferences on�eory and Practice of So�ware, ETAPS 2005, Edinburgh, UK,

April 4-8, 2005, Proceedings, volume 3444 of Lecture Notes in Computer Science, pages
5–20. Springer, 2005.

133

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program

analysis. Springer, 1999.

[Pnu77] Amir Pnueli. �e temporal logic of programs. In 18th Annual Symposium on Foun-

dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November

1977, pages 46–57. IEEE Computer Society, 1977.

[R+06] Jan Reineke et al. A definition and classification of timing anomalies. In 6th Inter-

national Workshop on Worst-Case Execution Time Analysis (WCET), July 2006.

[Rei09] Jan Reineke. Caches in WCET Analysis: Predictability - Competitiveness - Sensitivity.
PhD thesis, Saarland University, 2009.

[Rei18] Jan Reineke. �e semantic foundations and a landscape of cache-persistence analy-
ses. LITES, 5(1):03:1–03:52, 2018.

[RGBW07a] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Timing pre-
dictability of cache replacement policies. Real-Time Systems, 37(2):99–122, 2007.

[RGBW07b] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Timing pre-
dictability of cache replacement policies. Real-Time Systems, 37(2):99–122, 2007.

[RS09] Christine Rochange and Pascal Sainrat. A context-parameterized model for static
analysis of execution times. Trans. HiPEAC, 2:222–241, 2009.

[RWT+06] Jan Reineke, Björn Wachter, Stephan�esing, Reinhard Wilhelm, Ilia Polian, Jochen
Eisinger, and Bernd Becker. A definition and classification of timing anomalies.
In Frank Mueller, editor, 6th Intl. Workshop on Worst-Case Execution Time (WCET)

Analysis, July 4, 2006, Dresden, Germany, volume 4 of OASICS. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2006.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

[SB11] Fabio Somenzi and Aaron R. Bradley. IC3: where monolithic and incremental meet.
In Per Bjesse and Anna Slobodová, editors, International Conference on Formal Meth-

ods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - November

02, 2011, pages 3–8. FMCAD Inc., 2011.

[Som01] Fabio Somenzi. Efficient manipulation of decision diagrams. Int J. So�ware Tools for
Technology Transfer (STTT), 3(2):171–181, 2001.

[TAMV19] Sudarshan Tsb, Rahil Abbas Mir, and S Vijayalakshmi. Highly efficient lru imple-
mentations for high associativity cache memory. 03 2019.

[Tar55] Alfred Tarski. A la�ice-theoretical fixpoint theorem and its applications. Pacific J.
Math., 5(2):285–309, 1955.

[WM95] Wm. A. Wulf and Sally A. McKee. Hi�ing the memory wall: Implications of the
obvious. SIGARCH Comput. Archit. News, 23(1):20–24, March 1995.

134

[ZGJ+17] Wei Zhang, Fan Gong, Lei Ju, Nan Guan, and Zhiping Jia. Scope-aware useful cache
block analysis for data cache related preemption delay. In Gabriel Parmer, editor,
2017 IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS

2017, Pi�sburg, PA, USA, April 18-21, 2017, pages 63–74. IEEE Computer Society, 2017.

135

Nomenclature

α An Abstraction function, page 20

Blocks �e set of memory blocks accessed in a program, page 29

⊔ �e join operator of the over-approximating loading location analysis, page 114

⊔ �e join operator of the under-approximating loading location analysis, page 114

Dabs An Abstract Domain, page 20

Dconc A Concrete Domain, page 18

DEH �e Exist-Hit abstract domain, page 72

DEM �e Exist-Miss abstract domain, page 72

DLRU �e concrete domain of LRU valid cache states, page 29

DMay �e May analysis abstract domain, page 34

DMust �e Must analysis abstract domain, page 32

D �e domain of over-approximating loading location analysis, page 112

D �e domain of under-approximating loading location analysis, page 112

DPLRU �e concrete domain of PLRU valid cache states, page 126

α⊙ �e abstraction function from concrete domain to focus semantics domain, page 84

D⊙ �e focus semantics domain, page 84

update⊙ �e abstract update of the focus semantics, page 84

γ �e concretization function from the domain of over-approximating loading location
analysis to the trace domain, page 112

γ �e concretization function from the domain of under-approximating loading loca-
tion analysis to the trace domain, page 112

⊔EH �e Exist-Hit join operator, page 72

⊔EM �e Exist-Miss join operator, page 72

π A path in a Control-Flow Graph, page 18

136

q̂EH A Exist-Hit abstract cache state, page 72

q̂EM A Exist-Miss abstract cache state, page 72

q̂May A May abstract cache state, page 34

q̂Must A Must abstract cache state, page 32

q An abstract value in D , page 112

q An abstract value in D , page 112

update �e concrete update transformer, page 29

update �e update transformer of the over-approximating loading location analysis,
page 112

update �e update transformer of the under-approximating loading location analysis,
page 112

E �e set of edges of a Control Flow Graph, page 18

F �e concrete collecting semantics, page 19

fv �e concrete transformer associated to basic block v., page 18

G A Control Flow Graph, page 18

V �e set of basic blocks of the program, page 18

137

Chapitre 7

Résumé en français

Les centrales électriques, les trains, les satellites de communications ou les engins spatiaux sont
autant d’exemples de systèmes temps-réel critiques. En effet, une défaillance d’un de ces systèmes
peut entraı̂ner des pertes de vies humaines ou, dans une moindre mesure, un coût économique
important. En d’autres termes, les systèmes temps-réels critiques sont les systèmes qui doivent
impérativement respecter les échéances qui leurs sont imposées car leur éventuelle défaillance au-
rait des conséquences importantes. Par exemple, une tâche qui consisterait à lire périodiquement
la valeur de capteurs pour corriger la trajectoire d’un avion est un système critique temps-réel : si
la tâche possède une période d’une milliseconde, alors elle doit s’exécuter un moins d’une milli-
seconde.

Toutefois, à cause des débits grandissants de données à traiter, les processeurs modernes
emploient de nombreuses optimisations matérielles qui rendent difficile la prédiction du temps
d’exécution exact d’un programme. En particulier, l’utilisation de mémoires caches accélère
certains calculs en présence d’un mémoire DRAM, en gardant les instructions et données
fréquemment accédées dans une mémoire rapide proche du processeur. Ainsi, la latence d’une
instruction impliquant seulement le CPU ne subit pas de pénalité d’accès à la mémoire (dont la
latence est plus élevée de plusieurs ordres de grandeur). La latence d’un accès mémoire peut donc
varier significativement en présence de caches, selon qu’il en résulte un cache hit (l’information
cherchée se trouve déjà dans le cache) ou un cache miss (l’information se trouve en mémoire
centrale seulement). Assurer qu’un programme termine avant l’échéance imposée est donc plus
compliqué en présence de caches.

En pratique, les analyses statiques perme�ant de borner le temps d’exécution d’un programme
doivent prendre les éventuels caches en considération pour ne pas fournir une borne trop pessi-
miste. L’objectif des analyses de cache est donc de classer les accés mémoires dans une des trois
catégories suivantes :

1. Always Hit : cet accès mémoire résulte toujours en un cache hit ;

2. Always Miss : cet accès mémoire résulte toujours en un cache miss ;

3. cet accès peut résulter en un hit ou un miss, selon le chemin d’exécution emprunté.

La question de l’appartenance d’un accès à l’une de ces catégorie est en générale indécidable ;
et les analyses impliquées ont donc recours à des abstractions, et peuvent classer certains accès
comme “unknown”. Plus précisément, le problème de l’indécidabilité est souvent résolu en suppo-
sant que tous les chemins d’exécution du programme sont possibles. Si construire un programme
ne vérifiant pas ce�e hypothèse est trivial (par exemple, un ajoutant du code mort), le modèle du

138

programme obtenu (qui suppose tous les chemins comme possibles) couvre toutes les comporte-
ments possibles du programme. Une analyse qui traite toutes les exécutions décrites par le modèle
traite donc toutes les exécutions du véritable programme.

Toutefois, malgré ce�e hypothèse que “tous les chemins d’exécutions sont possibles”, le
problème de classement des accès mémoires reste difficiles, et les analyses efficaces utilisent
davante d’abstractions.

Dans ce�e thèse, nous étudions l’impact de ce�e hypothèse sur les analyses de caches. Plus
précisément :

• Nous étudions la complexité algorithmique d’une analyse de cache théorique optimalement
précise sous ce�e hypothèse. En effet, si ce�e hypothèse rend le problème décidable, cer-
tains caches sont plus difficiles à analyser que d’autres. Nous analysons donc la difficulté
intrinsèque de différentes politiques de remplacement (l’algorithme qui choisit quel bloc
évincer du cache pour pouvoir en stocker d’autres) sous ce�e hypothèse, du point de vue
de la théorie de la complexité.

• Commementionné précédemment, certaines analyses sont capables de garantir que certains
accès mènent toujours à un hit ou à unmiss. Toutefois, aucune analyse à notre connaissance
n’est capable de classer des accès mémoires dans la catégorie 3 ci-dessus.

• Finalement, nous nous intéressons à l’efficacité d’une analyse de cache optimale dans l’hy-
pothèse que tous les chemins d’exécution sont faisables. En pratique, les binaires analysés
sont des programmes industriels dont les flots de contrôle sont restreints, et les caches ont
une associativité relativement faibles. Il est donc intéressant d’observer l’efficacité d’une
telle analyse dans des cas réels d’utilisation.

Contributions

Complexité d’une analyse de précision optimale Tandis que l’intuition dicte qu’un
cache retient les mots accédés autant sa taille le permet, la réalité est plus complexe : le fonc-
tionnement du cache dépend du nombre de niveaux de caches, de la taille de chacun d’entre eux,
de leur nombre de voies (également appelé associativité) et de leur politique de remplacement.
L’analyse de cache utilisée dépend donc de la politique de remplacement du cache et on peut
remarquer une ne�e préférence pour la politique LRU (Least Recently Used) dans la li�érature,
notamment grâce à l’analyse par interprétation abstraite de Ferdinand [AFMW96] et à ses va-
riations. À l’inverse, certaines politiques comme PLRU (Pseudo-LRU), NMRU (Not Most Recently

Used) ou FIFO (First-In, First-Out) ont la réputation d’être difficiles à analyser [HLTW03b] et peu
prédictibles [RGBW07b]. Il est donc légitime de se demander si ces politiques de remplacement
sont intrinsèquement difficiles à analyser, ou si la recherche n’a pas encore aboutie à des algo-
rithmes efficaces. En effet, la difficulté d’analyser des politiques de caches différente n’est pas liée
à l’efficacité de ces politiques de remplacement. L’analyse statique s’intéresse au comportant en
pire-cas du programme, et des politiques de comportement similaires en moyenne1 peuvent être
très différentes l’une de l’autre du point de vue de l’analyse de caches. Bien que PLRU et NMRU
soient par conception des politiques inspirés de LRU (mais de faible coût d’implémentation) et
que leurs efficacités soient comparables [AMM04], elles sont très différentes du point de vue

1ici nous ne référons pas à une moyenne au sens d’une distribution de probabilité, mais plutôt au sens informel
de valable sur des exemples industriels pertinents, par opposition à des exemples conçus pour exhiber de très bons
ou très mauvais comportements

139

d’une analyse de pire-cas. Nous évaluons donc la complexité des problèmes de classification des
accès mémoire sous différentes politiques de remplacement.

Accès Mémoires Definitely Unknown Comme mentionné précédemment, les analyses
comme May et Must présentées dans [AFMW96] reposent sur des approximations pour classer
des accès commeAlways-Miss ou Always-Hit. Dans ce�e configuration, les analyses de cache ne
donnent aucune informations concernant les autres accès (non classés). En effet, un accès non
classé peut être un accès Always-Hit ou Always-Miss non détecté par l’analyse à cause des ap-
proximations effectuées, ou résulter en des hits ou miss selon le chemin d’exécution. Nous in-
troduisons donc la notion d’accès Definitely Unknown pour désigner les accès pouvant résulter
en un hit ou en un miss selon le contexte d’exécution. Ce�e distinction entre accès Unknown et
Definitely Unknown permet alors de de charactériser la précision d’une analyse. Les accès Unk-
nown peuvent en effet être raffinés en Always-Hit, Alway-Miss ou Definitely Unknown en utilisant
une analyse de cache plus précise. En revanche, les accès classés comme Definitely Unknown sont
une conséquence du programme analysé et de la configuration du cache. Ces accès ne peuvent
pas être raffinés en Always-Hit ou Always-Miss, quelque soit la méthode employée. Nous propo-
sons donc une analyse similaire aux analyses May et Must, capable d’approximer l’ensemble des
accès Definitely Unknown pour la politique LRU et sous l’hypothèse que tous les chemins sont
exécutables.

Analyse de cache exacte Finalement, l’incertitude résultant d’une classification imprécise
des accès mémoire peut impacter fortement les analyses de WCET (Worst Case Execution Time
- temps d’exécution dans le pire cas). Par exemple, il est important de connaı̂tre avec précision
le comportement du cache lorsque l’on cherche à analyser le comportement d’un processeur su-
perscalaire et/ou avec pipeline. En effet, lorsque l’analyse de cache n’est pas capable de classer
un accès mémoire comme Always-Hit ou Always-Miss, l’analyse de pipeline doit envisager les
deux possibilités, menant éventuellement à une explosion du nombre d’état de pipeline à analy-
ser. L’imprécision de l’analyse de cache peut donc avoir deux conséquences distinctes sur l’ana-
lyse de WCET : (a) une surestimation du véritable pire temps d’exécution, par exemple en cas de
classification trop grossière d’accès qui en réalité mènent à des hits. Un utilisateur peut suspec-
ter ce type de phénomènes lorsque la borne sur le WCET est loin des temps d’exécution obtenus
expérimentalement. Ceci peut alors décourager l’utilisateur d’utiliser des outils d’analyse statique.
(b) un temps d’analyse excessivement élevé, causé par l’explosion de l’espace d’états. Améliorer
la précision des analyses de caches est donc important dans le contexte de l’analyse de WCET,
mais ces améliorations doivent être réalisable pour un coût raisonnable. Dans ce�e thèse, nous
proposons deux approches pour éliminer l’incertitude sur la classification des accès mémoire, une
basée sur l’usage d’un model checker, l’autre réalisée par interprétation abstraite.

140

Abstract
�e certification of real-time safety critical programs requires bounding their execution time. Due to the high impact of cache memories on

memory access latency, modern Worst-Case Execution Time estimation tools include a cache analysis. �e aim of this analysis is to statically
predict if memory accesses result in a cache hit or a cache miss. �is problem is undecidable in general, thus usual cache analyses perform
some abstractions that lead to precision loss. One common assumption made to remove the source of undecidability is that all execution paths
in the program are feasible. Making this hypothesis is reasonable because the safety of the analysis is preserved when adding spurious paths to
the program model. However, classifying memory accesses as cache hits or misses is still hard in practice under this assumption, and efficient
cache analysis usually involve additional approximations, again leading to precision loss. �is thesis investigates the possibility of performing an
optimally precise cache analysis under the common assumption that all execution paths in the program are feasible.

We formally define the problems of classifying accesses as hits and misses, and prove that they are NP-hard or PSPACE-hard for common
replacement policies (LRU, FIFO, NMRU and PLRU). However, if these theoretical complexity results legitimate the use of additional abstraction,
they do not preclude the existence of algorithms efficient in practice on industrial workloads.

Because of the abstractions performed for efficiency reasons, cache analyses can usually classify accesses as Unknown in addition to Always-
Hit (Must analysis) or Always-Miss (May analysis). Accesses classified as Unknown can lead to both a hit or a miss, depending on the program
execution path followed. However, it can also be that they belong to one of the Always-Hit or Always-Miss category and that the cache analysis
failed to classify them correctly because of a coarse approximation. We thus designed a new analysis for LRU instruction that is able to soundly
classify some accesses into a new category, called Definitely Unknown, that represents accesses that can lead to both a hit or a miss. For those
accesses, one knows for sure that their classification does not result from a coarse approximation but is a consequence of the program structure
and cache configuration. By doing so, we also reduce the set of accesses that are candidate for a refined classification using more powerful and
more costly analyses.

Our main contribution is an analysis that can perform an optimally precise analysis of LRU instruction caches. We use a method called block
focusing that allows an analysis to scale by only analyzing one cache block at a time. We thus take advantage of the low number of candidates
for refinement le� by our Definitely Unknown analysis. �is analysis produces an optimal classification of memory accesses at a reasonable cost
(a few times the cost of the usual May and Must analyses).

We evaluate the impact of our precise cache analysis on the pipeline analysis. Indeed, when the cache analysis is not able to classify an
access as Always-Hit or Always-Miss, the pipeline analysis must consider both cases. By providing a more precise memory access classification,
we thus prune the state space explored by the pipeline analysis and hence the WCET analysis time.

Aside from this application of precise cache analysis to WCET estimation, we investigate the possibility of using the Definitely Unknown

analysis in the domain of security. Indeed, caches can be used as side-channel to extract some sensitive data from a program execution, and we
propose a variation of our Definitely Unknown analysis to help a developer finding the source of some information leakage.

Résumé
Dans le cadre des systèmes critiques, la certification de programmes temps-réel nécessite de borner leur temps d’exécution. Les mémoires caches

impactant fortement la latence des accès mémoires, les outils de calcul de pire temps d’exécution incluent des analyses de cache. Ces analyses
visent à prédire statiquement si ces accès aboutissent à des cache-hits ou des cache-miss. Ce problème étant indécidable en général, les analyses de
caches emploient des abstractions pouvant mener à des pertes de précision. Une hypothèse habituelle pour rendre le problème décidable consiste
à supposer que toutes les exécutions du programme sont réalisables. Ce�e hypothèse est raisonnable car elle ne met pas en cause la validité de
l’analyse : tous les véritables chemins d’exécutions du programme sont couverts par l’analyse. Néanmoins, la classification des accès mémoires
reste difficile en pratique malgré ce�e hypothèse, et les analyses de cache efficaces utilisent des approximations supplémentaires. Ce�e thèse
s’intéresse à la possibilité de réaliser des analyses de cache de précision optimale sous l’hypothèse que tous les chemins sont faisables.

Les problèmes de classification d’accès mémoires en hits et miss y sont définis formellement et nous prouvons qu’ils sont NP-difficiles,
voire PSPACE-difficiles, pour les politiques de remplacement usuelles (LRU, FIFO, NMRU et PLRU). Toutefois, si ces résultats théoriques justifient
l’utilisation d’abstractions supplémentaires, ils n’excluent pas l’existence d’un algorithme efficace en pratique pour des instances courantes dans
l’industrie.

Les abstractions usuelles ne perme�ent pas, en général, de classifier tous les accès mémoires en Always-Hit et Always-Miss. Certains sont
alors classifiés Unknown par l’analyse de cache, et peuvent aboutir à des cache-hits comme à des cache-miss selon le chemin d’exécution em-
prunté. Cependant, il est aussi possible qu’un accès soit classifié comme Unknown alors qu’il mène toujours à un hit (ou un miss), à cause d’une
approximation trop grossière. Nous proposons donc une nouvelle analyse de cache d’instructions LRU, capable de classifier certains accès comme
Definitely Unknown, une nouvelle catégorie représentant les accès pouvant mener à un hit ou à un miss. On est alors certain que la classification
de ces accès est due au programme et à la configuration du cache, et pas à une approximation peu précise. Par ailleurs, ce�e analyse réduit le
nombre d’accès candidats à une reclassification par des analyses plus précises mais plus coûteuses.

Notre principale contribution est une analyse capable de produire une classification de précision optimale. Celle-ci repose sur une méthode
appelée block focusing qui permet le passage à l’échelle en analysant les blocs de cache un par un. Nous profitons ainsi de l’analyse Definitely

Unknown, qui réduit le nombre de candidats à une classification plus précise. Ce�e analyse précise produit alors une classification optimale pour
un coût raisonnable (proche du coût des analyses usuelles May et Must).

Nous étudions également l’impact de notre analyse exacte sur l’analyse de pipeline. En effet, lorsqu’une analyse de cache ne parvient pas
à classifier un accès comme Always-Hit ou Always-Miss, les deux cas (hit et miss) sont envisagés par l’analyse de pipeline. En fournissant une
classification plus précise des accès mémoires, nous réduisons donc la taille de l’espace d’états de pipeline exploré, et donc le temps de l’analyse.

Par ailleurs, ce�e thèse étudie la possibilité d’utiliser l’analyse Definitely Unknown dans le domaine de la sécurité. Les mémoires caches
peuvent être utilisées comme canaux cachés pour extraire des informations de l’exécution d’un programme. Nous proposons une variante de
l’analyse Definitely Unknown visant à localiser la source de certaines fuites d’information.

	Introduction
	Organization of the manuscript

	Context
	Caches
	Blocks and Locality Principles
	Cache sets and associativity
	Index, Tag, Offset
	Replacement policies
	Caches and Address Translation
	Cache configuration in this thesis

	Static Analysis
	Abstract Interpretation
	Model Checking
	Cache analysis methods in this thesis

	State of the Art in Cache Analysis
	Cache Conflict Graph
	Analysis of LRU caches
	Ferdinand's May and Must analyses
	Persistence Analysis and Loop Unrolling
	Other replacement policies
	Cache analysis by Model Checking

	Cache Analysis Complexity
	Background
	Complexity of Replacement Policies
	Fixed associativity
	LRU
	FIFO
	PLRU
	NMRU

	Exact Cache Analysis
	Approximating the set of Definitely Unknown Accesses
	Reminder: Caches and Static Cache Analysis
	Abstract Interpretation for Definitely Unknown
	Definitely Unknown Proofs
	Experimental Evaluation

	Exact Analysis of LRU Cache by Model Checking
	Block Focusing
	Proof of Block focusing correctness

	Exact Analysis of LRU Cache by Abstract Interpretation
	Exact Analyses as Fixed-Point Problems
	Data Structures and Algorithms

	Experiments
	Refinement of Accesses classification by Exact Analyses
	Efficiency comparison of Model Checking and ZDD approach
	May/Must and Exact analyses execution time comparison

	Applications
	WCET Application
	Experiments
	WCET comparison
	Analysis time comparison

	Security
	Program model and semantics
	Our vulnerability analysis
	Analyses soundness

	Conclusion
	Future Work
	Program Semantics
	Analyzing Data Caches
	Reducing analysis cost
	Other replacement policies

	Résumé en français

